Underfloor heating as a cause of fire

2021 ◽  
Vol 30 (3) ◽  
pp. 41-53
Author(s):  
G. V. Plotnikova ◽  
K. L. Kuznetsov ◽  
S. S. Timofeeva ◽  
R. O. Morozov ◽  
A. A. Shekov

Introduction. The relevance of the topic, addressed in the article, is backed by the fact that modern heating systems, such as the underfloor heating, remain potential sources of fire, despite the improvement in their designs. The purpose of the study is to identify the causes of fires that occur in the process of operation of modern heating systems “Underfloor Heating”; to analyze and generalize the conclusions made by the fire safety experts in respect of the heating systems analyzed in the article.Materials and methods. To assess the flammability of the infrared film underfloor heating, an experiment was conducted by the experts: the process of underfloor heating was simulated under normal environmental conditions at room temperature.Results and discussion. The experiment has shown that the floor covering, made of the material capable of accumulating heat, is the most dangerous one, although its small area prevents its disconnection from the thermal sensor. When dismantling the construction, the co-authors found out that the foil insulator had been melting in the area of maximal temperatures. Over the course of seven hours of operation, the temperature exceeded 120 ºC, and after that the odor of products of thermal decomposition of a synthetic product appeared.Conclusions. Despite all the features of advanced underfloor heating systems, their automated operation and transformation, they remain potentially flammable. Modern underfloor heating systems can take fire both as a result of violation of the fire precautions in case of non-compliance with the requirements for the operation of heating devices, and as a result of overheated film heaters located under the floor covering.

1992 ◽  
Vol 57 (11) ◽  
pp. 2302-2308
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Emerich Erdös

The kinetics of the reaction of solid sodium carbonate with sulfur dioxide depends on the microstructure of the solid, which in turn is affected by the way and conditions of its preparation. The active form, analogous to that obtained by thermal decomposition of NaHCO3, emerges from the dehydration of Na2CO3 . 10 H2O in a vacuum or its weathering in air at room temperature. The two active forms are porous and have approximately the same specific surface area. Partial hydration of the active Na2CO3 in air at room temperature followed by thermal dehydration does not bring about a significant decrease in reactivity. On the other hand, if the preparation of anhydrous Na2CO3 involves, partly or completely, the liquid phase, the reactivity of the product is substantially lower.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jolanta Prywer ◽  
Rafał Kruszyński ◽  
Marcin Świątkowski ◽  
Andrzej Soszyński ◽  
Dariusz Kajewski ◽  
...  

AbstractIn this paper, we present the first experimental evidence of the piezoelectric nature of struvite (MgNH4PO4·6H2O). Using a single diffusion gel growth technique, we have grown struvite crystals in the form of plane parallel plates. For struvite crystals of this shape, we measured the piezoelectric coefficients d33 and d32. We have found that at room temperature the value of piezoelectric coefficient d33 is 3.5 pm/V, while that of d32 is 4.7 pm/V. These values are comparable with the values for other minerals. Struvite shows stable piezoelectric properties up to the temperature slightly above 350 K, for the heating rate of 0.4 K/min. For this heating rate, and above this temperature, the thermal decomposition of struvite begins, which, consequently, leads to its transformation into dittmarite with the same non-centrosymmetric symmetry as in case of struvite. The struvite-dittmarite transformation temperature is dependent on the heating rate. The higher the heating rate, the higher the temperature of this transformation. We have also shown that dittmarite, like struvite exhibits piezoelectric properties.


2020 ◽  
Vol 21 (3) ◽  
pp. 781
Author(s):  
Isabel Iglesias ◽  
José A. Huidobro ◽  
Belén F. Alfonso ◽  
Camino Trobajo ◽  
Aránzazu Espina ◽  
...  

The hydrothermal synthesis and both the chemical and structural characterization of a diamin iron phosphate are reported. A new synthetic route, by using n-butylammonium dihydrogen phosphate as a precursor, leads to the largest crystals described thus far for this compound. Its crystal structure is determined from single-crystal X-ray diffraction data. It crystallizes in the orthorhombic system (Pnma space group, a = 10.1116(2) Å, b = 6.3652(1) Å, c = 7.5691(1) Å, Z = 4) at room temperature and, below 220 K, changes towards the monoclinic system P21/n, space group. The in situ powder X-ray thermo-diffraction monitoring for the compound, between room temperature and 1100 K, is also included. Thermal analysis shows that the solid is stable up to ca. 440 K. The kinetic analysis of thermal decomposition (hydrogenated and deuterated forms) is performed by using the isoconversional methods of Vyazovkin and a modified version of Friedman. Similar values for the kinetic parameters are achieved by both methods and they are checked by comparing experimental and calculated conversion curves.


2013 ◽  
Vol 11 (7) ◽  
pp. 1225-1238
Author(s):  
Iliana Medina-Ramírez ◽  
Cynthia Floyd ◽  
Joel Mague ◽  
Mark Fink

AbstractThe reaction of R3M (M=Ga, In) with HESiR′3 (E=O, S; R′3=Ph3, iPr3, Et3, tBuMe2) leads to the formation of (Me2GaOSiPh3)2(1); (Me2GaOSitBuMe2)2(2); (Me2GaOSiEt3)2(3); (Me2InOSiPh3)2(4); (Me2InOSitBuMe2)2(5); (Me2InOSiEt3)2(6); (Me2GaSSiPh3)2(7); (Et2GaSSiPh3)2(8); (Me2GaSSiiPr3)2(9); (Et2GaSSiiPr3)2(10); (Me2InSSiPh3)3(11); (Me2InSSiiPr3)n(12), in high yields at room temperature. The compounds have been characterized by multinuclear NMR and in most cases by X-ray crystallography. The molecular structures of (1), (4), (7) and (8) have been determined. Compounds (3), (6) and (10) are liquids at room temperature. In the solid state, (1), (4), (7) and (9) are dimers with central core of the dimer being composed of a M2E2 four-membered ring. VT-NMR studies of (7) show facile redistribution between four- and six-membered rings in solution. The thermal decomposition of (1)–(12) was examined by TGA and range from 200 to 350°C. Bulk pyrolysis of (1) and (2) led to the formation of Ga2O3; (4) and (5) In metal; (7)–(10) GaS and (11)–(12) InS powders, respectively.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 954
Author(s):  
Dasheng Lu ◽  
Francisco Gámez ◽  
Patricia Haro-González

In recent years, optically trapped luminescent particles have emerged as a reliable probe for contactless thermal sensing because of the dependence of their luminescence on environmental conditions. Although the temperature effect in the optical trapping stability has not always been the object of study, the optical trapping of micro/nanoparticles above room temperature is hindered by disturbances caused by temperature increments of even a few degrees in the Brownian motion that may lead to the release of the particle from the trap. In this report, we summarize recent experimental results on thermal sensing experiments in which micro/nanoparticles are used as probes with the aim of providing the contemporary state of the art about temperature effects in the stability of potential trapping processes.


2018 ◽  
Vol 27 (1) ◽  
pp. 91-99
Author(s):  
Waldemar Jaskółowski

Global statistics indicate that toxic combustion products generated during fires are the most frequent cause of fatalities, i.e. 70–80% of all fatalities. It should be emphasises that this is one of the least studied fi elds of knowledge as regards fire safety engineering. Consequently the problem of assessing the fire environment toxicity is one of the most important, and perhaps even the most important aspect that requires analyses and evaluation from the fire safety viewpoint. The first part of the article presents the current state of issues mentioned above. The author discussed measurement methods of toxic products that are being generated during thermal decomposition and combustion. The second part presents a review of available solutions in this respect, which have been outlined in selected available documents, such as for example standards and publications. The contents of this paper make it clear that the mentioned issues require comprehensive changes and the adoption of new regulations in this respect both in Poland and worldwide.


2016 ◽  
Vol 77 (3) ◽  
pp. 431-436 ◽  
Author(s):  
F. C. Nery ◽  
D. O. Prudente ◽  
A. A. Alvarenga ◽  
R. Paiva ◽  
M. C. Nery

Abstract Calophyllum brasiliense is a species native to Brazil and has potential for use in the timber industry, in the reforestation of degraded areas, besides having medicinal properties. Its propagation is mainly by seeds which, depending on their recalcitrant characteristics, leads to difficulty in conservation, due to changes in its physiological potential during storage. Aiming to contribute to the expansion of its cultivation, rational use and conservation, the objective of this study was to investigate the behavior of C. brasiliense seeds during storage. Different packings (paper, aluminum and polyethylene) and environmental conditions (room temperature and cold chamber) were quarterly tested over 12 months, by evaluating germination viability and vigor. Based on the results, it was concluded that packaging in polyethylene and freezer storage provided the best conditions for the conservation of seeds, keeping them viable for a period of nine months.


The photochemical decomposition of hydrogen sulphide has been investigated at pressures between 8 and 550 mm of mercury and at temperatures between 27 and 650° C, using the narrow cadmium line ( λ 2288) and the broad mercury band (about λ 2550). At room temperature the quantum yield increases with pressure from 1.09 at 30 mm to 1.26 at 200 mm. Above 200 mm pressure there was no further increase in the quantum yield. Temperature had little effect on the quantum yield at λ 2550, but there was a marked increase in the rate of hydrogen production between 500 and 650° C with 2288 Å radiation. This may have been caused by the decomposition of excited hydrosulphide radicals. The results are consistent with a mechanism involving hydrogen atoms and hydrosulphide radicals. The mercury-photosensitized reaction is less efficient than the photochemical decomposition, the quantum yield being only about 0.45. The efficiency increased with temperature and approached unity at high temperatures and pressures. This agrees with the suggestion that a large fraction of the quenching collisions lead to the formation of Hg ( 3 P 0 ) atoms. The thermal decomposition is heterogeneous at low temperatures and becomes homogeneous and of the second order at 650° C. The experimental evidence suggests the bimolecular mechanism 2H 2 S → 2H 2 + S 2 . The activation energies are 25 kcal/mole (heterogeneous) and 50 kcal/mole (homogeneous).


Author(s):  
С.Н. МЕДВЕДЕВА ◽  
Т.А. ПЕРЕЖОГИНА ◽  
Е.В. ГНУЧИХ

Представлены результаты анализа содержания монооксида углерода, бензола, 1,3-бутадиена в газовой фазе аэрозоля (ГФА) образцов нагреваемых табачных палочек (стики) для электрических систем нагревания табака, пяти марок коммерческих сигарет, контрольной сигареты 3R4F с помощью тестирования на курительной машине в стандартном режиме прокуривания ISO и интенсивном ISO Intense. Установлено значительное снижение содержания монооксида углерода, бензола и 1,3-бутадиена в аэрозоле образцов стиков по режиму ISO Intense и ISO. Количество образующегося монооксида углерода в ГФА образцов стиков составляет 2% от его содержания в ГФА образца контрольных сигарет 3R4F, что подтверждает отсутствие процессов термического разложения (пиролиза) табака. Определено, что в ГФА образцов стиков содержится значительно меньше вредных и потенциально опасных соединений. Установлено снижение содержания бензола и 1,3-бутадиена более чем на 99% по сравнению с контрольным образцом 3R4F и пятью образцами популярных в России марок сигарет. The results of the analysis of the content of carbon monoxide, benzene, 1,3-butadiene in the aerosol gas phase (AGPh) of heated tobacco sticks for electric tobacco heating systems, five brands of commercial cigarettes, 3R4F control cigarette using testing on a Smoking machine in standard ISO smoking mode and ISO Intense are presented. A significant decrease in the content of carbon monoxide, benzene and 1,3-butadiene in stick aerosols according to the ISO Intense and ISO modes was found. The amount of carbon monoxide produced in the effluent AGPh is 2% of its content in the AGPh of 3R4F control cigarettes, which confirms the absence of thermal decomposition (pyrolysis) of tobacco. It was determined that the AGPh of verses contains significantly fewer harmful and potentially dangerous compounds. A decrease in the content of benzene and 1,3-butadiene was found by more than 99% compared to the control sample of 3R4F cigarettes and five brands of cigarettes popular in Russia.


Sign in / Sign up

Export Citation Format

Share Document