scholarly journals A PROBABLISTIC APPROACH TO EVALUATION OF THE ULTIMATE LOAD ON FLEXURAL RC ELEMENT ON CRACK LENGTH

Author(s):  
Sergey Solovyev

The fracture mechanics of concrete and reinforced concrete is a promising direction in the development of methods for reinforced concrete structural elements design and inspection. At the same time, probabilistic methods of design and behavior analysis of structural elements are of particular interest. The article describes a probabilistic approach to load-bearing capacity and reliability analysis of flexural reinforced concrete elements based on the crack length criterion. The functional relationship between the critical stress intensity coefficient of concrete and the design compressive strength of concrete is given. The article presents a method for the reliability analysis of flexural reinforced concrete elements at the operational stage with limited statistical data about the critical stress intensity coefficient of concrete. The ultimate value of the failure probability (or reliability index) should be set for each object individually based on the value of the acceptable risk.

Author(s):  
S. A. Solov’ev ◽  
O. V. Yarygina

The article describes a probabilistic approach to the reliability analysis of a flexural reinforced concrete element by the cracking criterion using the provisions of fracture mechanics. Two mathematical models of limit state are proposed for reliability analysis: with the evaluation of the critical stress intensity coefficient directly and through the design concrete compressive strength. On the basis of regression analysis, the relationship between the critical stress intensity coefficient and the design concrete compressive strength is established which can be used in the inspection of reinforced concrete structural elements. The influence of the design concrete compressive strength on the failure (cracking) probability of the flexural reinforced concrete element is analyzed. The numerical example of reliability analysis is given for the reinforced concrete beam by the criterion of cracking. It is noted that the required level of reliability should be set for each structural object individually based on the acceptable risk value using economic and non-economic losses.


2021 ◽  
Vol 87 (1) ◽  
pp. 45-51
Author(s):  
R. A. Vorob’ev ◽  
V. N. Litovchenko

The goal of the study is to reveal the impact of change in the structural state of steel 07Kh3GNMYuA after heat treatment on the values of the critical stress intensity coefficient (K1c) obtained at a temperature of 50°C and on the velocity of ultrasound wave propagation, as well as to determine a correlation between them for rapid assessment of the crack resistance using acoustic characteristics. The mechanical characteristics of the material and the critical stress intensity coefficient K1c were obtained on the test machine «Inspekt 100 Table». The tangent method is used for determination of K1c. Three samples per K1c value were used in the experiment for a three-point bending scheme at the operating temperature T = –50°C. Acoustic parameters were measured using the echo-pulse method. The results of ultrasonic scanning of heat-strengthened samples made of steel 07Kh3GNMYuA demonstrated the possibility of non-destructive quantitative evaluation of the critical stress intensity coefficient. New data on the mechanical properties of steel 07Kh3GNMYuA and on the correlation between the velocity of longitudinal elastic waves and the values of the critical stress intensity coefficient of structures were obtained. Deviation of the calculated values of K1c obtained using acoustic measurements from the experimental values does not exceed 10%. The proposed model, which explains change in the acoustic characteristics of steel 07Kh3GNMYuA on the basis of phase changes occurring in the steel structure upon tempering, provides conducting of similar studies for other modes of heat treatment and other steel grades. The method is a low labor- and time-consuming procedure for determination of the mechanical characteristics of the products made of steel 07Kh3GNMYuA, since it does not require the manufacturing of samples and their testing. The developed procedure can be proposed for manufacturing application, as the main or additional method for evaluation of the mechanical parameters of materials after various modes of heat treatment.


2021 ◽  
pp. 41-47
Author(s):  
E.A. SADOVSKAYA ◽  
E.N. POLONINA ◽  
S.N. LEONOVICH ◽  
S.A. ZHDANOK ◽  
V.V. POTAPOV

2021 ◽  
Vol 9 (1) ◽  
pp. 1-5
Author(s):  
Irina Mayackaya ◽  
Batyr Yazyev ◽  
Anastasia Fedchenko ◽  
Denis Demchenko

Reinforced concrete elements of structures in the form of columns, beams, ceilings are widely used in the construction of buildings and structures of industrial and civil construction. In most cases, the columns serve as supports for other building elements, for example, crossbars, slabs, girders, beams. One of the cycles of the work of reinforced concrete structures is the state of their repair and reconstruction, including the stages of strengthening the elements. There is a problem of strengthening of reinforced concrete columns. The article deals with the issue of reinforcing columns and other structural elements having a cylindrical surface, with polymeric composite materials in the form of carbon fiber lamellae. The use of composite materials allows to increase the service life and strength of reinforced concrete structures used in construction.


2012 ◽  
Vol 195-196 ◽  
pp. 297-302 ◽  
Author(s):  
Wei Feng Zhao ◽  
Jing Zhou ◽  
Guo Bin Bu

Bamboo is mainly a tropical and subtropical plant which is found adequate in many countries. The strength of bamboo as concrete reinforcement is much lower than steel bar reinforcement. However, one of the merits is a cheap and replenishable agricultural resource and abundantly available. Due to excellent properties like high strength to weight ratio, high tensile strength and free-cutting and processing, bamboo as a potential reinforcement material in place of steel is widely available in concrete structural elements. The present paper introduces some of the existing studies and application technology of bamboo reinforced concrete elements in building structures, such as bamboo reinforced concrete columns, beams, slabs and walls.


2014 ◽  
Vol 1079-1080 ◽  
pp. 248-251
Author(s):  
David Pustka

Rapid development of computer technologies brings possibility to exploitpowerful computers for reliability analysis of (civil) engineering structuresunder consideration of random properties of various quantities influencingtheir resulting reliabilities. Aim of this paper is to outline possibility ofutilization of computer simulation Monte Carlo to predict reliability of areinforced concrete retaining wall from the viewpoint of possible loss ofstability. One of advantages of this approach is possibility to quantifyprobability of failure allowing structural optimization leading to design ofmore effective structures.


Holzforschung ◽  
2010 ◽  
Vol 64 (4) ◽  
Author(s):  
Hiroshi Yoshihara

Abstract The critical stress intensity factor of mode I (K Ic) obtained by single-edge-notched bending (SENB) tests of wood was experimentally and numerically analyzed. A double cantilever beam (DCB) test was also conducted and the results were compared with those of SENB tests. The K Ic value was obtained by introducing an additional crack length into the equations used for analyzing the SENB test of isotropic material when the initial crack length ranged from 0.1 to 0.6 times the depth of the specimen.


Sign in / Sign up

Export Citation Format

Share Document