scholarly journals SUTHERLAND-EINSTEIN HYPOTHESIS ON THE ORIGIN OF MAGNETIC FIELDS IN ASTROPHYSICAL OBJECTS

Metaphysics ◽  
2020 ◽  
pp. 166-174
Author(s):  
I. A Babenko

The article discusses the theoretical and experimental foundations of the hypothesis on the origin the magnetic field's the Earth's and other astrophysical objects, put forward at the beginning of the twentieth century by Sutherland and Einstein. According to this hypothesis, the different of the electric charg of the electron and proton and the rotation of the Earth (astronomical), leads to the appearance of a magnetic field. Experiments under terrestrial conditions aimed at determining the difference between the electric charges of an electron and a proton are discussed.

2011 ◽  
Vol 287-290 ◽  
pp. 2916-2920
Author(s):  
Chun Yan Ban ◽  
Peng Qian ◽  
Xu Zhang ◽  
Qi Xian Ba ◽  
Jian Zhong Cui

The resistance of Al-21%Cu alloy under no magnetic field, DC magnetic field and AC magnetic field from liquid to solid was measured by a four-probe method. The difference of resistance versus temperature curves (R-T curves) was analyzed. It is found that the R-T curves of Al-21%Cu alloy are monotone decreasing and have two obvious turning points. Under DC magnetic field, the liquidus and solidus temperatures of the alloy both decrease, while under AC magnetic field, the liquidus and solidus temperatures both increase. There is a good agreement between the microstructure of quenching sample and R-T curves. The mechanism of the effect of magnetic fields was discussed.


Both the penetrating power of the cosmic rays through material ab­sorbers and their ability to reach the earth in spite of its magnetic field, make it certain that the energy of many of the primary particles must reach at least 10 11 e-volts. However, the energy measurements by Kunze, and by Anderson, using cloud chambers in strong magnetic fields, have extended only to about 5 x 10 9 e-volts. Particles of greater energy were reported, but the curvature of their tracks was too small to be measured with certainty. We have extended these energy measurements to somewhat higher energies, using a large electro-magnet specially built for the purpose and described in Part I. As used in these experiments, the magnet allowed the photography of tracks 17 cm long in a field of about 14,000 gauss. The magnet weighed about 11,000 kilos and used a power of 25 kilowatts.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


1990 ◽  
Vol 140 ◽  
pp. 83-89
Author(s):  
A.A. Ruzmaikin

The fast dynamo acting in a turbulent flow explains the origin of magnetic fields in astrophysical objects. Stellar cycles and large-scale magnetic fields in spiral galaxies reflect the behaviour of a mean magnetic field. Intermittent magnetic structures in clusters of galaxies are associated with random magnetic field.


2001 ◽  
Vol 693 ◽  
Author(s):  
M. Wojdak ◽  
J.M. Baranowski ◽  
A. Wysmolck ◽  
K. Pakula ◽  
R. Stepnicwski ◽  
...  

AbstractTwo-electron transition occurs when the exciton bound to a neutral donor (DBE) recombines and leaves the donor in an excited state. The two-electron energy is therefore lower than that of the DBE peak by the difference in ground and excited state of the neutral donor. In a magnetic field the two-electron satellite splits into several components. These intra-donor excitations have been studied in homoepitaxial GaN up to magnetic fields reaching 23T. For Faraday (B‖c) configuration the two-electron transition splits mainly into 2s, 2p0, 2p+ and 2p- components. The total splitting between 2p+ and 2p- is equal to Landau energy. For Voigt (B???c) configuration in addition to transition to 2s, 2p0, 2p- and 2p+ there are additional lines which origin is discussed. It has been found that for two configurations of magnetic field the separation between 2p+ and 2p- is not exactly equal, what indicates the anisotropy of the electron effective mass. It has been found that m| = 0.205m0 and m??? = 0.225m0.


2015 ◽  
Vol 12 (04) ◽  
pp. 1550046
Author(s):  
Kostadin Trenčevski

In this paper we show that the Thomas precession of the spinning bodies, which is in general case constrained in all rigid bodies, induces magnetic field of the spinning bodies. This is one of the main reasons for the magnetic field of the spinning bodies. The general formula for this magnetic field is deduced and if it is applied to the Earth, its magnetic field changes between 0.295 G at the equator and 0.59 G at the poles, assuming that the density inside the Earth is uniform.


Author(s):  
Jarier Wannous ◽  
Peter Horváth

The paper offers a few activities for high school students which use the magnetometer of a smartphone to measure the value of magnetic fields. The first part of the paper deals with finding the magnetometer of the used smartphone. Following is the first selection of activities which are focused on discovering the equation for measuring the magnetic field of coil with a negligible length, while the second selection of activities use the discovered equation to measure the permeability of vacuum and finally to measure the magnetic field of the earth. Sample results of the experiments are given, showing the accuracy and effectiveness of the conducted experiments. The activities offer teachers a novel way for teaching the equation for calculating the magnetic field of a coil, as well as measuring the permeability of vacuum in a classroom environment.


Author(s):  
E. A. Mikhailov ◽  
M. V. Pashentsevay

Accretion discs surround different compact astrophysical objects such as black holes, neutron stars and white dwarfs. Also they are situated in systems of variable stars and near the galaxy center. Magnetic fields play an important role in evolution and hydrodynamics of the accretion discs: for example, they can describe such processes as the transition of the angular momentum. There are different approaches to explain the magnetic fields, but most interesting of them are connected with dynamo generation. As for disc, it is quite useful to take no-$z$ approximation which has been developed for galactic discs to solve the dynamo equations. It takes into account that the disc is quite thin, and we can solve the equations only for two plane components of the field. Here we describe the time dependence of the magnetic field for different distances from the center of the disc. Also we compare the results with another approaches which take into account more complicated field structure.


Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 76 ◽  
Author(s):  
Jeremy Heyl ◽  
Ilaria Caiazzo

Radiative corrections of quantum electrodynamics cause a vacuum threaded by a magnetic field to be birefringent. This means that radiation of different polarizations travels at different speeds. Even in the strong magnetic fields of astrophysical sources, the difference in speed is small. However, it has profound consequences for the extent of polarization expected from strongly magnetized sources. We demonstrate how the birefringence arises from first principles, show how birefringence affects the polarization state of radiation and present recent calculations for the expected polarization from magnetars and X-ray pulsars.


2011 ◽  
Vol 189-193 ◽  
pp. 4477-4482
Author(s):  
Chun Yan Ban ◽  
Xu Zhang ◽  
Peng Qian ◽  
Yi Han ◽  
Jian Zhong Cui

The effects of DC and AC magnetic field on the phase composition, morphology and distribution of the ternary Al-Fe-Si alloy were investigated. The solidification structures of the alloy solidified with and without the application of magnetic fields were confirmed by DSC and structural measurements. The results showed that, in this Al-Fe-Si alloy the fine needle-like Al3Fe phase dominated the microstructure at the grain boundaries with the minor amount of Chinese script-like α-AlFeSi. Distribution of Al3Fe phase was almost homogeneous in the volume of the sample when alloy was solidified in the conventional condition. When the DC magnetic field was imposed, distribution of Al3Fe phase was more homogeneous. However, the Al3Fe and α-AlFeSi phases were accumulated towards the center of the sample with the application of the AC magnetic field. This is due to the difference of Lorentz force between Al matrix and iron-containing intermetallics. Furthermore, the amount of Chinese script-like α-AlFeSi was increased remarkably under AC magnetic field.


Sign in / Sign up

Export Citation Format

Share Document