scholarly journals DEVELOPMENT OF INTEGRATED GAS INSTRUMENTATION SYSTEM IN DIRECT REDUCTION PLANT

Author(s):  
A. Adriansyah ◽  
F. Rahman

<p class="TRANSAffiliation">Direct reduction is the removal of oxygen from iron without melting process. In direct reduction process, the presence of mixture gas in accordance levels largely determines the performance of the iron produced. Therefore, it needs gas sensors system which has high accuracy and reliability in this process. Unfortunately, there are some things that cause decreasing in the accuracy and reliability of the gas sensor in this process. This paper aims to offer a system that can preserve the accuracy and reliability of the gas measurement system called as Integrated Gas Instrumentation System. The system tends to integrate gas sensor component using Specific Gravity (SG) with other components, such as water trap, filter regulator and monitor gas flow rate. The values of Specific Gravity Meter based on process that display in DCS system are compared with lab results for three type of experiments. Based on experiment results it can be said that the proposed system is able to improve the accuracy and reliability of direct reduction process.</p>

2019 ◽  
Vol 964 ◽  
pp. 19-25 ◽  
Author(s):  
Fakhreza Abdul ◽  
Sungging Pintowantoro ◽  
Alief Bram Hidayatullah

Indonesia has abundant resources or raw materials, especially the iron sand raw materials. But, the iron sand processing in Indonesia is still low. Even though, the steel demand in Indonesia is still high. So, the iron sand processing product as raw materials in steelmaking is the solution of it. In this research, the study was conducted by using the variation of briquette dimension of mixture of iron sand and iron ore in Direct Reduction process. The aim of this research is to study the effect of briquette dimension on Fe content and degree of metallization of the Direct Reduced Iron (DRI). First, the iron sand and iron ore were crushed and shieved until pass the 50 mesh standar size. Then, iron sand and iron ore were mixed and briquetted based on the variation of dimension. There are three variations of briquette dimension. Then, the briquettes was reduced at 1250°C for 12 hours. The reduced briquettes then were analyzed using XRD, XRF and degree metallization calculation. The result showed that the dimension of briquette affect the Fe content and the degree metallization of DRI. The dimension of briquette will affect the reductor gas flow in the crucible, so the rate and direction of reduction process of iron oxide will be affected too. The best briquette is Briquette B (7.9 cm for inside diameter, 15.1 cm for outer diameter and 19.5 cm for the height), with 75.02% for Fe total content and 66.52% for degree of metallization. This was due to The briquette B has the most evenly diffused dimension either vertically and horizontally.


2016 ◽  
Vol 55 (3) ◽  
pp. 345-355 ◽  
Author(s):  
T. Jiang ◽  
L. Yang ◽  
G. Li ◽  
J. Luo ◽  
J. Zeng ◽  
...  

2021 ◽  
Vol 118 (2) ◽  
pp. 209
Author(s):  
Nan Li ◽  
Feng Wang ◽  
Wei Zhang

In view of the carbon-containing composite pellets direct reduction process in rotary hearth furnace, a mathematical model coupling heterogeneous chemical reaction kinetics, heat and mass transfer of this process was established. The effects of furnace temperature (from 1273.15 K to 1673.15 K) and pellet radius (from 6 mm to 16 mm) on the direct reduction of carbon-containing composite pellets were studied by adopting computational fluid dynamics software. The pellet temperature and composition changes under different operating conditions were analyzed. CO and CO2 fluxes, heat fluxes on the pellet surface were especially studied. Total heat absorption by the pellet, CO and CO2 overflow from the pellet surface together with pellet degree of metallization (DOM) and zinc removal rate (ZRR) were calculated. Results show that with the increasing of furnace temperature or the decreasing of the pellet radius, the temperature difference between pellet surface and its center and the final DOM, ZRR increased. The larger the pellet radius, the smaller the heat absorption, also the smaller CO and CO2 overflow. But heat absorption and CO overflow per unit volume are higher. There is an optimal pellet radius with high CO utilization efficiency. Pellet porosity decreases at first and then increases with reducing time. It is also found that effective thermal conductivity is a major factor limiting the pellets temperature increasing. The reduction sequence of the pellets is Fe2O3→Fe3O4→FeO→Fe.


2015 ◽  
Vol 22 (8) ◽  
pp. 2914-2921 ◽  
Author(s):  
De-qing Zhu ◽  
Yan-hong Luo ◽  
Jian Pan ◽  
Xian-lin Zhou

1989 ◽  
Vol 105 (2) ◽  
pp. 175-180
Author(s):  
Kazuyoshi SHIMAKAGE ◽  
Kazuhiko ENDO ◽  
Tadao SATO ◽  
Hiroshi KATAYAMA

2008 ◽  
Vol 35 (1) ◽  
pp. 3-13 ◽  
Author(s):  
J. Y. Shi ◽  
E. Donskoi ◽  
D. L. S. McElwain ◽  
L. J. Wibberley

2011 ◽  
Vol 233-235 ◽  
pp. 753-758
Author(s):  
Zhao Cai Wang ◽  
Man Sheng Chu ◽  
Zhuang Nian Li ◽  
Jue Tang ◽  
Qing Jie Zhao ◽  
...  

The paigeite resources are abundant in China, but most of them are difficult to be utilized efficiently because of the current technical problems on industrial practice. It is necessary to perfected and innovated for comprehensive utilization of paigeite. The new process of gas-based shaft furnace direct reduction-electric furnace smelting separation provides a new way to efficient and clean comprehensive utilization of paigeite resources. In this paper, the pellets are prepared from boron-bearing iron concentrate. The mechanisms of roasting, the rules of reduction, and the properties of reduction swelling are also investigated. And then the pellets after reduction are smelted and separated in electric furnace to study the properties of products and analyze the feasibility and superiority of new technique. The results showed that boron-bearing iron concentrate is a kind of good raw material for pelletizing process. The properties of boron-bearing pellets after roasting for 20 min at 1200°C could meet to the requirements of gas-based shaft furnace direct reduction process, which exhibited fast reaction rate, good reduction swelling properties and high compressive strength both before and after reduction. With the new process, the efficient separation of boron and iron can be realized. The high boron grade and high activity of boron-rich slag obtained from new process can be used directly in boric acid manufacture. The new process shows excellent tech-economy feasibility to achieve efficiency and clean comprehensive utilization of paigeite resources.


1987 ◽  
Vol 19 (1-4) ◽  
pp. 115-126
Author(s):  
Nobuyuki Imanishi ◽  
Ryo Watanabe ◽  
Mamoru Onoda ◽  
Masao Shirieda

Sign in / Sign up

Export Citation Format

Share Document