scholarly journals Patient-Specific Tumor Microenvironment Models

2021 ◽  
Vol 19 (4) ◽  
pp. 197-222
Author(s):  
Jung Woo Lee ◽  
Jia Kim ◽  
Youngjae Shin ◽  
Byung Hoon Chi ◽  
Jung Hoon Kim ◽  
...  

The heterogeneity of cancer makes it difficult to predict the prognosis of treatment. There is still a lack of preclinical model systems that reflect the clinical characteristics of patients who have heterogenetic tumors. Advances in 3-dimentional (3D) cell culture are leading to discoveries that occur in the development and progression of cancer that has not been known. There are many models including patient-derived xenograft, patient-derived organoid and spheroid, patient-derived explant, scaffold-based model, and system-based model. Each 3D model has its strengths and limitations. One model cannot answer every question, so it seems most reasonable to approach multiple models when studying cancer heterogeneity. Hopefully, 3D tumor modeling will make tremendous progress on this path by fusion of innovative biomaterials and advanced modeling techniques that can partially mimic the heterogeneous environment of real tumors.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dwaipayan Adhya ◽  
George Chennell ◽  
James A. Crowe ◽  
Eva P. Valencia-Alarcón ◽  
James Seyforth ◽  
...  

Abstract Background The inability to observe relevant biological processes in vivo significantly restricts human neurodevelopmental research. Advances in appropriate in vitro model systems, including patient-specific human brain organoids and human cortical spheroids (hCSs), offer a pragmatic solution to this issue. In particular, hCSs are an accessible method for generating homogenous organoids of dorsal telencephalic fate, which recapitulate key aspects of human corticogenesis, including the formation of neural rosettes—in vitro correlates of the neural tube. These neurogenic niches give rise to neural progenitors that subsequently differentiate into neurons. Studies differentiating induced pluripotent stem cells (hiPSCs) in 2D have linked atypical formation of neural rosettes with neurodevelopmental disorders such as autism spectrum conditions. Thus far, however, conventional methods of tissue preparation in this field limit the ability to image these structures in three-dimensions within intact hCS or other 3D preparations. To overcome this limitation, we have sought to optimise a methodological approach to process hCSs to maximise the utility of a novel Airy-beam light sheet microscope (ALSM) to acquire high resolution volumetric images of internal structures within hCS representative of early developmental time points. Results Conventional approaches to imaging hCS by confocal microscopy were limited in their ability to image effectively into intact spheroids. Conversely, volumetric acquisition by ALSM offered superior imaging through intact, non-clarified, in vitro tissues, in both speed and resolution when compared to conventional confocal imaging systems. Furthermore, optimised immunohistochemistry and optical clearing of hCSs afforded improved imaging at depth. This permitted visualization of the morphology of the inner lumen of neural rosettes. Conclusion We present an optimized methodology that takes advantage of an ALSM system that can rapidly image intact 3D brain organoids at high resolution while retaining a large field of view. This imaging modality can be applied to both non-cleared and cleared in vitro human brain spheroids derived from hiPSCs for precise examination of their internal 3D structures. This process represents a rapid, highly efficient method to examine and quantify in 3D the formation of key structures required for the coordination of neurodevelopmental processes in both health and disease states. We posit that this approach would facilitate investigation of human neurodevelopmental processes in vitro.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3408
Author(s):  
Karita Peltonen ◽  
Sara Feola ◽  
Husen M. Umer ◽  
Jacopo Chiaro ◽  
Georgios Mermelekas ◽  
...  

Knowledge of clinically targetable tumor antigens is becoming vital for broader design and utility of therapeutic cancer vaccines. This information is obtained reliably by directly interrogating the MHC-I presented peptide ligands, the immunopeptidome, with state-of-the-art mass spectrometry. Our manuscript describes direct identification of novel tumor antigens for an aggressive triple-negative breast cancer model. Immunopeptidome profiling revealed 2481 unique antigens, among them a novel ERV antigen originating from an endogenous retrovirus element. The clinical benefit and tumor control potential of the identified tumor antigens and ERV antigen were studied in a preclinical model using two vaccine platforms and therapeutic settings. Prominent control of established tumors was achieved using an oncolytic adenovirus platform designed for flexible and specific tumor targeting, namely PeptiCRAd. Our study presents a pipeline integrating immunopeptidome analysis-driven antigen discovery with a therapeutic cancer vaccine platform for improved personalized oncolytic immunotherapy.


2021 ◽  
Vol 33 (3) ◽  
pp. 229-234
Author(s):  
Aria Baniahmad

Abstract The generation of three-dimensional (3D) cancer models is a novel and fascinating development in the study of personalized medicine and tumor-specific drug delivery. In addition to the classical two-dimensional (2D) adherent cell culture models, 3D spheroid and organoid cancer models that mimic the microenvironment of cancer tissue are emerging as an important preclinical model system. 3D cancer models form, similar to cancer, multiple cell–cell and cell–extracellular matrix interactions and activate different cellular cascades/pathways, like proliferation, quiescence, senescence, and necrotic or apoptotic cell death. Further, it is possible to analyze genetic variations and mutations, the microenvironment of cell–cell interactions, and the uptake of therapeutics and nanoparticles in nanomedicine. Important is also the analysis of cancer stem cells (CSCs), which could play key roles in resistance to therapy and cancer recurrence. Tumor spheroids can be generated from one tumor-derived cell line or from co-culture of two or more cell lines. Tumor organoids can be derived from tumors or may be generated from CSCs that differentiate into multiple facets of cancerous tissue. Similarly, tumorspheres can be generated from a single CSC. By transplanting spheroids and organoids into immune-deficient mice, patient-derived xenografts can serve as a preclinical model to test therapeutics in vivo. Although the handling and analysis of 3D tumor spheroids and organoids is more complex, it will provide insights into various cancer processes that cannot be provided by 2D culture. Here a short overview of 3D tumor systems as preclinical models is provided.


Author(s):  
Hui Lin ◽  
Kim L. McBride ◽  
Vidu Garg ◽  
Ming-Tao Zhao

Congenital heart disease (CHD) is the most common cause of infant death associated with birth defects. Recent next-generation genome sequencing has uncovered novel genetic etiologies of CHD, from inherited and de novo variants to non-coding genetic variants. The next phase of understanding the genetic contributors of CHD will be the functional illustration and validation of this genome sequencing data in cellular and animal model systems. Human induced pluripotent stem cells (iPSCs) have opened up new horizons to investigate genetic mechanisms of CHD using clinically relevant and patient-specific cardiac cells such as cardiomyocytes, endothelial/endocardial cells, cardiac fibroblasts and vascular smooth muscle cells. Using cutting-edge CRISPR/Cas9 genome editing tools, a given genetic variant can be corrected in diseased iPSCs and introduced to healthy iPSCs to define the pathogenicity of the variant and molecular basis of CHD. In this review, we discuss the recent progress in genetics of CHD deciphered by large-scale genome sequencing and explore how genome-edited patient iPSCs are poised to decode the genetic etiologies of CHD by coupling with single-cell genomics and organoid technologies.


2021 ◽  
Vol 9 (9) ◽  
pp. e002627
Author(s):  
Nicholas L Bayless ◽  
Jeffrey A Bluestone ◽  
Samantha Bucktrout ◽  
Lisa H Butterfield ◽  
Elizabeth M Jaffee ◽  
...  

Recent advances in cancer immunotherapy have completely revolutionized cancer treatment strategies. Nonetheless, the increasing incidence of immune-related adverse events (irAEs) is now limiting the overall benefits of these treatments. irAEs are well-recognized side effects of some of the most effective cancer immunotherapy agents, including antibody blockade of the cytotoxic T-lymphocyte-associated protein 4 and programmed death protein 1/programmed-death ligand 1 pathways. To develop an action plan on the key elements needed to unravel and understand the key mechanisms driving irAEs, the Society for Immunotherapy for Cancer and the American Association for Cancer Research partnered to bring together research and clinical experts in cancer immunotherapy, autoimmunity, immune regulation, genetics and informatics who are investigating irAEs using animal models, clinical data and patient specimens to discuss current strategies and identify the critical next steps needed to create breakthroughs in our understanding of these toxicities. The genetic and environmental risk factors, immune cell subsets and other key immunological mediators and the unique clinical presentations of irAEs across the different organ systems were the foundation for identifying key opportunities and future directions described in this report. These include the pressing need for significantly improved preclinical model systems, broader collection of biospecimens with standardized collection and clinical annotation made available for research and integration of electronic health record and multiomic data with harmonized and standardized methods, definitions and terminologies to further our understanding of irAE pathogenesis. Based on these needs, this report makes a set of recommendations to advance our understanding of irAE mechanisms, which will be crucial to prevent their occurrence and improve their treatment.


2019 ◽  
Vol 20 (9) ◽  
pp. 2123 ◽  
Author(s):  
Sendfeld ◽  
Selga ◽  
Scornik ◽  
Pérez ◽  
Mills ◽  
...  

Brugada syndrome is an inherited, rare cardiac arrhythmogenic disease, associated with sudden cardiac death. It accounts for up to 20% of sudden deaths in patients without structural cardiac abnormalities. The majority of mutations involve the cardiac sodium channel gene SCN5A and give rise to classical abnormal electrocardiogram with ST segment elevation in the right precordial leads V1 to V3 and a predisposition to ventricular fibrillation. The pathophysiological mechanisms of Brugada syndrome have been investigated using model systems including transgenic mice, canine heart preparations, and expression systems to study different SCN5A mutations. These models have a number of limitations. The recent development of pluripotent stem cell technology creates an opportunity to study cardiomyocytes derived from patients and healthy individuals. To date, only a few studies have been done using Brugada syndrome patient-specific iPS-CM, which have provided novel insights into the mechanisms and pathophysiology of Brugada syndrome. This review provides an evaluation of the strengths and limitations of each of these model systems and summarizes the key mechanisms that have been identified to date.


2020 ◽  
Vol 10 (6) ◽  
pp. 344 ◽  
Author(s):  
Clemens L. Schoepf ◽  
Maximilian Zeidler ◽  
Lisa Spiecker ◽  
Georg Kern ◽  
Judith Lechner ◽  
...  

Preclinical research using different rodent model systems has largely contributed to the scientific progress in the pain field, however, it suffers from interspecies differences, limited access to human models, and ethical concerns. Human induced pluripotent stem cells (iPSCs) offer major advantages over animal models, i.e., they retain the genome of the donor (patient), and thus allow donor-specific and cell-type specific research. Consequently, human iPSC-derived nociceptors (iDNs) offer intriguingly new possibilities for patient-specific, animal-free research. In the present study, we characterized iDNs based on the expression of well described nociceptive markers and ion channels, and we conducted a side-by-side comparison of iDNs with mouse sensory neurons. Specifically, immunofluorescence (IF) analyses with selected markers including early somatosensory transcription factors (BRN3A/ISL1/RUNX1), the low-affinity nerve growth factor receptor (p75), hyperpolarization-activated cyclic nucleotide-gated channels (HCN), as well as high voltage-gated calcium channels (VGCC) of the CaV2 type, calcium permeable TRPV1 channels, and ionotropic GABAA receptors, were used to address the characteristics of the iDN phenotype. We further combined IF analyses with microfluorimetric Ca2+ measurements to address the functionality of these ion channels in iDNs. Thus, we provide a detailed morphological and functional characterization of iDNs, thereby, underpinning their enormous potential as an animal-free alternative for human specific research in the pain field for unveiling pathophysiological mechanisms and for unbiased, disease-specific personalized drug development.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 567 ◽  
Author(s):  
Susana Pascoal ◽  
Benjamin Salzer ◽  
Eva Scheuringer ◽  
Andrea Wenninger-Weinzierl ◽  
Caterina Sturtzel ◽  
...  

Chimeric antigen receptor (CAR) T cells have proven to be a powerful cellular therapy for B cell malignancies. Massive efforts are now being undertaken to reproduce the high efficacy of CAR T cells in the treatment of other malignancies. Here, predictive preclinical model systems are important, and the current gold standard for preclinical evaluation of CAR T cells are mouse xenografts. However, mouse xenograft assays are expensive and slow. Therefore, an additional vertebrate in vivo assay would be beneficial to bridge the gap from in vitro to mouse xenografts. Here, we present a novel assay based on embryonic zebrafish xenografts to investigate CAR T cell-mediated killing of human cancer cells. Using a CD19-specific CAR and Nalm-6 leukemia cells, we show that live observation of killing of Nalm-6 cells by CAR T cells is possible in zebrafish embryos. Furthermore, we applied Fiji macros enabling automated quantification of Nalm-6 cells and CAR T cells over time. In conclusion, we provide a proof-of-principle study that embryonic zebrafish xenografts can be used to investigate CAR T cell-mediated killing of tumor cells. This assay is cost-effective, fast, and offers live imaging possibilities to directly investigate CAR T cell migration, engagement, and killing of effector cells.


Author(s):  
Chen Wang ◽  
Jian Yang ◽  
Hong Luo ◽  
Kun Wang ◽  
Yu Wang ◽  
...  

Abstract Comprehensive genomic analyses of cancers have revealed substantial intrapatient molecular heterogeneities that may explain some instances of drug resistance and treatment failures. Examination of the clonal composition of an individual tumor and its evolution through disease progression and treatment may enable identification of precise therapeutic targets for drug design. Multi-region and single-cell sequencing are powerful tools that can be used to capture intratumor heterogeneity. Here, we present a database we’ve named CancerTracer (http://cailab.labshare.cn/cancertracer): a manually curated database designed to track and characterize the evolutionary trajectories of tumor growth in individual patients. We collected over 6000 tumor samples from 1548 patients corresponding to 45 different types of cancer. Patient-specific tumor phylogenetic trees were constructed based on somatic mutations or copy number alterations identified in multiple biopsies. Using the structured heterogeneity data, researchers can identify common driver events shared by all tumor regions, and the heterogeneous somatic events present in different regions of a tumor of interest. The database can also be used to investigate the phylogenetic relationships between primary and metastatic tumors. It is our hope that CancerTracer will significantly improve our understanding of the evolutionary histories of tumors, and may facilitate the identification of predictive biomarkers for personalized cancer therapies.


Sign in / Sign up

Export Citation Format

Share Document