scholarly journals Comparative Analysis of Rainfall Trends in the Jinghe River Basin During 1959-2014

Author(s):  
Xunjian Long ◽  
Xuerou Weng ◽  
yan ye ◽  
Yong Ye

Trend analysis is widely applied in hydrometeorological research. Considering that Innovative Trend Analysis (ITA) and Innovative Polygonal Trend Analysis (IPTA) can detect small variations on annual and smaller scale, rainfall trends at 14 hydrometeorological stations in the Jinghe River Basin were analyzed by ITA, IPTA and Mann Kendall test (MK). The results showed that the rainfall trends are subsistent from 1959 to 2014. Comparing the results of ITA and MK on annual level, it was determined that trends are consistent, but only two stations passed the 90% significance test through MK, while all stations passed the significance test through ITA. Accordingly, the ITA method proved to be better than MK in detecting small changes in time series. Changes in high and low values, obtained by the ITA method, reflected flood and drought trends in the basin. In addition, IPTA is an improved ITA method that is suitable for a relatively short time span. Through the IPTA method for analyzing the monthly precipitation trends, the results showed that rainfall at 14 stations increased in January, February, March, June and December, and decreased significantly in September. Therefore, the methodology applied in this study can provide detailed recommendations for hydrometeorological research.

Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 332 ◽  
Author(s):  
Yilinuer Alifujiang ◽  
Jilili Abuduwaili ◽  
Balati Maihemuti ◽  
Bilal Emin ◽  
Michael Groll

The analysis of various characteristics and trends of precipitation is an essential task to improve the utilization of water resources. Lake Issyk-Kul basin is an upper alpine catchment, which is more susceptible to the effects of climate variability, and identifying rainfall variations has vital importance for water resource planning and management in the lake basin. The well-known approaches linear regression, Şen’s slope, Spearman’s rho, and Mann-Kendall trend tests are applied frequently to try to identify trend variations, especially in rainfall, in most literature around the world. Recently, a newly developed method of Şen-innovative trend analysis (ITA) provides some advantages of visual-graphical illustrations and the identification of trends, which is one of the main focuses in this article. This study obtained the monthly precipitation data (between 1951 and 2012) from three meteorological stations (Balykchy, Cholpon-Ata, and Kyzyl-Suu) surrounding the Lake Issyk-Kul, and investigated the trends of precipitation variability by applying the ITA method. For comparison purposes, the traditional Mann–Kendall trend test also used the same time series. The main results of this study include the following. (1) According to the Mann-Kendall trend test, the precipitation of all months at the Balykchy station showed a positive trend (except in January (Zc = −0.784) and July (Zc = 0.079)). At the Cholpon-Ata and Kyzyl-Suu stations, monthly precipitation (with the same month of multiple years averaged) indicated a decreasing trend in January, June, August, and November. At the monthly scale, significant increasing trends (Zc > Z0.10 = 1.645) were detected in February and October for three stations. (2) The ITA method indicated that the rising trends were seen in 16 out of 36 months at the three stations, while six months showed decreasing patterns for “high” monthly precipitation. According to the “low” monthly precipitations, 14 months had an increasing trend, and four months showed a decreasing trend. Through the application of the ITA method (January, March, and August at Balykchy; December at Cholpon-Ata; and July and December at Kyzyl-Suu), there were some significant increasing trends, but the Mann-Kendall test found no significant trends. The significant trend occupies 19.4% in the Mann-Kendall test and 36.1% in the ITA method, which indicates that the ITA method displays more positive significant trends than Mann–Kendall Zc. (3) Compared with the classical Mann-Kendall trend results, the ITA method has some advantages. This approach allows more detailed interpretations about trend detection, which has benefits for identifying hidden variation trends of precipitation and the graphical illustration of the trend variability of extreme events, such as “high” and “low” values of monthly precipitation. In contrast, these cannot be discovered by applying traditional methods.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1605
Author(s):  
Chaoxing Sun ◽  
Xiong Zhou

The assessment of future climate changes on drought and water scarcity is extremely important for water resources management. A modeling system is developed to study the potential status of hydrological drought and water scarcity in the future, and this modeling system is applied to the Jinghe River Basin (JRB) of China. Driven by high-resolution climate projections from the Regional Climate Modeling System (RegCM), the Variable Infiltration Capacity model is employed to produce future streamflow projections (2020–2099) under two Representative Concentration Pathway (RCP) scenarios. The copula-based method is applied to identify the correlation between drought variables (i.e., duration and severity), and to further quantify their joint risks. Based on a variety of hypothetical water use scenarios in the future, the water scarcity conditions including extreme cases are estimated through the Water Exploitation Index Plus (WEI+) indicator. The results indicate that the joint risks of drought variables at different return periods would decrease. In detail, the severity of future drought events would become less serious under different RCP scenarios when compared with that in the historical period. However, considering the increase in water consumption in the future, the water scarcity in JRB may not be alleviated in the future, and thus drought assessment alone may underestimate the severity of future water shortage. The results obtained from the modeling system can help policy makers to develop reasonable future water-saving planning schemes, as well as drought mitigation measures.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinliang Zhang ◽  
Yizi Shang ◽  
Jinyong Liu ◽  
Jian Fu ◽  
Shitao Wei ◽  
...  

Abstract The Jinghe River remains the major sediment source of the Yellow River in China; however, sediment discharge in the Jinghe River has reduced significantly since the 1950s. The objective of this study is to identify the causes of sediment yield variations in the Jinghe River Basin based on soil and water conservation methods and rainfall analyses. The results revealed that soil and water conservation projects were responsible for half of the total sediment reduction; sediment retention due to reservoirs and water diversion projects was responsible for 1.3% of the total reduction. Moreover, the Jinghe River Basin has negligible opportunity to improve its vegetation cover (currently 55% of the basin is covered with lawns and trees), and silt-arrester dams play a smaller role in reducing sediment significantly before they are entirely full. Therefore, new large-scale sediment trapping projects must be implemented across the Jinghe River Basin, where heavy rainfall events are likely to substantially increase in the future, leading to higher sediment discharge.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1782 ◽  
Author(s):  
Maochuan Hu ◽  
Takahiro Sayama ◽  
Sophal TRY ◽  
Kaoru Takara ◽  
Kenji Tanaka

Understanding long-term trends in hydrological and climatic variables is of high significance for sustainable water resource management. This study focuses on the annual and seasonal trends in precipitation, temperature, potential evapotranspiration, and river discharge over the Kamo River basin from the hydrological years 1962 to 2017. Homogeneity was examined by Levene’s test. The Mann–Kendall and a modified Mann–Kendall test as well as Sen’s slope estimator were used to analyze significant trends (p < 0.05) in a time series with and without serial correlation and their magnitudes. The results indicate that potential evapotranspiration calculated by the Penman–Monteith equation was highly related to temperature, and significantly increased in the annual and summer series. Annual river discharge significantly decreased by 0.09 m3/s. No significant trend was found at the seasonal scale. Annual, autumn, and winter precipitation at Kumogahata station significantly increased, while no significant trend was found at Kyoto station. Precipitation was least affected by the modified Mann–Kendall test. Other variables were relatively highly autocorrelated. The modified Mann–Kendall test with a full autocorrelation structure improved the accuracy of trend analysis. Furthermore, this study provides information for decision makers to take proactive measures for sustainable water management.


2020 ◽  
Vol 20 (7) ◽  
pp. 2471-2483
Author(s):  
Chun Kang Ng ◽  
Jing Lin Ng ◽  
Yuk Feng Huang ◽  
Yi Xun Tan ◽  
Majid Mirzaei

Abstract Climate change is most likely to cause changes to the temporal and spatial variability of rainfall. A trend analysis to investigate the rainfall pattern can detect changes over temporal and spatial scales for a rainfall series. In this study, trend analysis using the Mann–Kendall test and Sen's slope estimator was conducted in the Kelantan River Basin, Malaysia. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test was applied to evaluate the stationarity of the rainfall series. This basin annually faces onslaughts of varying year-end flooding conditions. The trend analysis was applied for monthly, seasonal and yearly rainfall series between 1989 and 2018. The temporal analysis results showed that both increasing and decreasing trends were detected for all rainfall series. The spatial analysis results indicated that the northern region of the Kelantan River Basin showed an increasing trend, whilst the southwest region showed a decreasing trend. It was found that almost all the rainfall series were stationary except at two rainfall stations during the Inter Monsoon 1, Inter Monsoon 2 and yearly rainfall series. Results obtained from this study can be used as reference for water resources planning and climate change assessment.


2019 ◽  
Vol 11 (4) ◽  
pp. 956-965 ◽  
Author(s):  
C. H. J. Bong ◽  
J. Richard

Abstract Severe droughts in the year 1998 and 2014 in Sarawak due to the strong El Niño has impacted the water supply and irrigated agriculture. In this study, the Standardized Precipitation Index (SPI) was used for drought identification and monitoring in Sarawak River Basin. Using monthly precipitation data between the year 1975 and 2016 for 15 rainfall stations in the basin, the drought index values were obtained for the time scale of three, six and nine months. Rainfall trend for the years in study was also assessed using the Mann–Kendall test and Sen's slope estimator and compared with the drought index. Findings showed that generally there was a decreasing trend for the SPI values for the three time scales, indicating a higher tendency of increased drought event throughout the basin. Furthermore, it was observed that there was an increase in the numbers of dry months in the recent decade for most of the rainfall stations as compared to the previous 30 to 40 years, which could be due to climate change. Findings from this study are valuable for the planning and formulating of drought strategies to reduce and mitigate the adverse effects of drought.


Sign in / Sign up

Export Citation Format

Share Document