scholarly journals High-efficiency retron-mediated single-stranded DNA production in plants

Author(s):  
Wenjun Jiang ◽  
Gundra Sivakrishna Rao ◽  
Rashid Aman ◽  
Haroon Butt ◽  
Radwa Kamel ◽  
...  

ABSTRACT Background: Retrons are a class of retroelements that produce multicopy single-stranded DNA (msDNA) and participate in anti-phage defenses in bacteria. Retrons have been harnessed for the over-production of single-stranded DNA (ssDNA), genome engineering, and directed evolution in bacteria, yeast, and mammalian cells. However, no studies have shown retron-mediated ssDNA production in plants, which could unlock potential applications in plant biotechnology. For example, ssDNA can be used as a template for homology-directed repair (HDR) in several organisms. However, current gene editing technologies rely on the physical delivery of synthetic ssDNA, which limits their applications. Main methods and major results: Here, we demonstrated retron-mediated over-production of ssDNA in Nicotiana benthamiana. Additionally, we tested different retron architectures for improved ssDNA production and identified a new retron architecture that resulted in greater ssDNA abundance. Furthermore, co-expression of the gene encoding the ssDNA-protecting protein VirE2 from Agrobacterium tumefaciens with the retron systems resulted in a 10.7-fold increase in ssDNA production in vivo. We also demonstrated CRISPR-retron-coupled ssDNA over-production and targeted HDR in N. benthamiana. Conclusion: We present an efficient approach for in vivo ssDNA production in plants, which can be harnessed for biotechnological applications.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Wesley A Wierson ◽  
Jordan M Welker ◽  
Maira P Almeida ◽  
Carla M Mann ◽  
Dennis A Webster ◽  
...  

Efficient precision genome engineering requires high frequency and specificity of integration at the genomic target site. Here, we describe a set of resources to streamline reporter gene knock-ins in zebrafish and demonstrate the broader utility of the method in mammalian cells. Our approach uses short homology of 24–48 bp to drive targeted integration of DNA reporter cassettes by homology-mediated end joining (HMEJ) at high frequency at a double strand break in the targeted gene. Our vector series, pGTag (plasmids for Gene Tagging), contains reporters flanked by a universal CRISPR sgRNA sequence which enables in vivo liberation of the homology arms. We observed high rates of germline transmission (22–100%) for targeted knock-ins at eight zebrafish loci and efficient integration at safe harbor loci in porcine and human cells. Our system provides a straightforward and cost-effective approach for high efficiency gene targeting applications in CRISPR and TALEN compatible systems.


2019 ◽  
Author(s):  
T Frei ◽  
F Cella ◽  
F Tedeschi ◽  
J Gutierrez ◽  
GB Stan ◽  
...  

AbstractDespite recent advances in genome engineering, the design of genetic circuits in mammalian cells is still painstakingly slow and fraught with inexplicable failures. Here we demonstrate that competition for limited transcriptional and translational resources dynamically couples otherwise independent co-expressed exogenous genes, leading to diminished performance and contributing to the divergence between intended and actual function. We also show that the expression of endogenous genes is likewise impacted when genetic payloads are expressed in the host cells. Guided by a resource-aware mathematical model and our experimental finding that post-transcriptional regulators have a large capacity for resource redistribution, we identify and engineer natural and synthetic miRNA-based incoherent feedforward loop (iFFL) circuits that mitigate gene expression burden. The implementation of these circuits features the novel use of endogenous miRNAs as integral components of the engineered iFFL device, a versatile hybrid design that allows burden mitigation to be achieved across different cell-lines with minimal resource requirements. This study establishes the foundations for context-aware prediction and improvement of in vivo synthetic circuit performance, paving the way towards more rational synthetic construct design in mammalian cells.


2015 ◽  
Vol 112 (5) ◽  
pp. 1356-1361 ◽  
Author(s):  
Tao Liu ◽  
Yong Zhang ◽  
Yan Liu ◽  
Ying Wang ◽  
Haiqun Jia ◽  
...  

On the basis of the 3D structure of a bovine antibody with a well-folded, ultralong complementarity-determining region (CDR), we have developed a versatile approach for generating human or humanized antibody agonists with excellent pharmacological properties. Using human growth hormone (hGH) and human leptin (hLeptin) as model proteins, we have demonstrated that functional human antibody CDR fusions can be efficiently engineered by grafting the native hormones into different CDRs of the humanized antibody Herceptin. The resulting Herceptin CDR fusion proteins were expressed in good yields in mammalian cells and retain comparable in vitro biological activity to the native hormones. Pharmacological studies in rodents indicated a 20- to 100-fold increase in plasma circulating half-life for these antibody agonists and significantly extended in vivo activities in the GH-deficient rat model and leptin-deficient obese mouse model for the hGH and hLeptin antibody fusions, respectively. These results illustrate the utility of antibody CDR fusions as a general and versatile strategy for generating long-acting protein therapeutics.


2007 ◽  
Vol 18 (4) ◽  
pp. 1129-1142 ◽  
Author(s):  
Bong Yoon Kim ◽  
James A. Olzmann ◽  
Gregory S. Barsh ◽  
Lih-Shen Chin ◽  
Lian Li

A null mutation in the gene encoding the putative E3 ubiquitin–protein ligase Mahogunin causes spongiform neurodegeneration, a recessively transmitted prion-like disease in mice. However, no substrates of Mahogunin have been identified, and the cellular role of Mahogunin is unknown. Here, we report the identification of TSG101, a key component of the endosomal sorting complex required for transport (ESCRT)-I, as a specific Mahogunin substrate. We find that Mahogunin interacts with the ubiquitin E2 variant (UEV) domain of TSG101 via its PSAP motif and that it catalyzes monoubiquitylation of TSG101 both in vivo and in vitro. Depletion of Mahogunin by small interfering RNAs in mammalian cells disrupts endosome-to-lysosome trafficking of epidermal growth factor receptor, resulting in prolonged activation of a downstream signaling cascade. Our findings support a role for Mahogunin in a proteasome-independent ubiquitylation pathway and suggest a link between dysregulation of endosomal trafficking and spongiform neurodegeneration.


2007 ◽  
Vol 75 (10) ◽  
pp. 4804-4816 ◽  
Author(s):  
Yongkai Mo ◽  
Natalie M. Quanquin ◽  
William H. Vecino ◽  
Uma Devi Ranganathan ◽  
Lydia Tesfa ◽  
...  

ABSTRACT Mycobacteria target and persist within phagocytic monocytes and are strong adjuvants, making them attractive candidate vectors for DNA vaccines. We characterized the ability of mycobacteria to deliver transgenes to mammalian cells and the effects of various bacterial chromosomal mutations on the efficiency of transfer in vivo and in vitro. First, we observed green fluorescent protein expression via microscopy and fluorescence-activated cell sorting analysis after infection of phagocytic and nonphagocytic cell lines by Mycobacterium smegmatis or M. bovis BCG harboring a plasmid encoding the fluorescence gene under the control of a eukaryotic promoter. Next, we compared the efficiencies of gene transfer using M. smegmatis or BCG containing chromosomal insertions or deletions that cause early lysis, hyperconjugation, or an increased plasmid copy number. We observed a significant—albeit only 1.7-fold—increase in the level of plasmid transfer to eukaryotic cells infected with M. smegmatis hyperconjugation mutants. M. smegmatis strains that overexpressed replication proteins (Rep) of pAL5000, a plasmid whose replicon is incorporated in many mycobacterial constructs, generated a 10-fold increase in plasmid copy number and 3.5-fold and 3-fold increases in gene transfer efficiency to HeLa cells and J774 cells, respectively. Although BCG strains overexpressing Rep could not be recovered, BCG harboring a plasmid with a copy-up mutation in oriM resulted in a threefold increase in gene transfer to J774 cells. Moreover, M. smegmatis strains overexpressing Rep enhanced gene transfer in vivo compared with a wild-type control. Immunization of mice with mycobacteria harboring a plasmid (pgp120h E) encoding human immunodeficiency virus gp120 elicited gp120-specific CD8 T-cell responses among splenocytes and peripheral blood mononuclear cells that were up to twofold (P < 0.05) and threefold (P < 0.001) higher, respectively, in strains supporting higher copy numbers. The magnitude of these responses was approximately one-half of that observed after intramuscular immunization with pgp120h E. M. smegmatis and other nonpathogenic mycobacteria are promising candidate vectors for DNA vaccine delivery.


2021 ◽  
Author(s):  
Tien Van Vu ◽  
Jihae Kim ◽  
Swati Das ◽  
Jae-Yean Kim

Precision genome editing is highly desired for crop improvement. The recently emerged CRISPR/Cas technology offers great potential applications in precision plant genome engineering. A prime editing (PE) approach combining a reverse transcriptase (RT) with a Cas9 nickase and a priming extended guide RNA has shown a high frequency for precise genome modification in mammalian cells and several plant species. However, the applications of the PE approach in dicot plants are still limited and inefficient. We designed and tested prime editors for precision editing of a synthetic sequence in a transient assay and for desirable alleles of 10 loci in tomato by stable transformation. However, our data obtained by targeted deep sequencing also revealed inefficient PE activity in both the tobacco and tomato systems. Further assessment of the activities of the PE components uncovered potential reasons for the inefficiency of the PE complexes. These data could also help explain the recent successes of some prime editors in plants using improved expression systems. Our work provides an important clue for the application of the PE approach in crop improvement.


2008 ◽  
Vol 29 (4) ◽  
pp. 1000-1006 ◽  
Author(s):  
Christine S. Vissinga ◽  
Tiong C. Yeo ◽  
Sarah Warren ◽  
James V. Brawley ◽  
Jennifer Phillips ◽  
...  

ABSTRACT Nijmegen breakage syndrome arises from hypomorphic mutations in the NBN gene encoding nibrin, a component of the MRE11/RAD50/nibrin (MRN) complex. In mammalian cells, the MRN complex localizes to the nucleus, where it plays multiple roles in the cellular response to DNA double-strand breaks. In the current study, sequences in mouse nibrin required to direct the nuclear localization of the MRN complex were identified by site-specific mutagenesis. Unexpectedly, nibrin was found to contain both nuclear localizing signal (NLS) sequences and a nuclear export signal (NES) sequence whose functions were confirmed by mutagenesis. Both nuclear import and export sequences were active in vivo. Disruption of either the NLS or NES sequences of nibrin significantly altered the cellular distribution of nibrin and Mre11 and impaired survival after exposure to ionizing radiation. Mutation of the NES sequence in nibrin slowed the turnover of phosphorylated nibrin after irradiation, indicating that nuclear export of nibrin may function, in part, to downregulate posttranslationally modified MRN complex components after DNA damage responses are complete.


2019 ◽  
Vol 116 (34) ◽  
pp. 16729-16735 ◽  
Author(s):  
Yue Sun ◽  
Feng Ding ◽  
Zhao Chen ◽  
Ruiping Zhang ◽  
Chonglu Li ◽  
...  

Discrete Pt(II) metallacycles have potential applications in biomedicine. Herein, we engineered a dual-modal imaging and chemo-photothermal therapeutic nano-agent 1 that incorporates discrete Pt(II) metallacycle 2 and fluorescent dye 3 (emission wavelength in the second near-infrared channel [NIR-II]) into multifunctional melanin dots with photoacoustic signal and photothermal features. Nano-agent 1 has a good solubility, biocompatibility, and stability in vivo. Both photoacoustic imaging and NIR-II imaging in vivo confirmed that 1 can effectively accumulate at tumor sites with good signal-to-background ratio and favorable distribution. Guided by precise dual-modal imaging, nano-agent 1 exhibits a superior antitumor performance and less severe side effects compared with a single treatment because of the high efficiency of the chemo-photothermal synergistic therapy. This study shows that nano-agent 1 provides a promising multifunctional theranostic platform for potential applications in biomedicine.


2019 ◽  
Vol 20 (5) ◽  
pp. 1247 ◽  
Author(s):  
Daniel Guzmán-Zapata ◽  
José Sandoval-Vargas ◽  
Karla Macedo-Osorio ◽  
Edgar Salgado-Manjarrez ◽  
José Castrejón-Flores ◽  
...  

The clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) technology is a versatile and useful tool to perform genome editing in different organisms ranging from bacteria and yeast to plants and mammalian cells. For a couple of years, it was believed that the system was inefficient and toxic in the alga Chlamydomonas reinhardtii. However, recently the system has been successfully implemented in this model organism, albeit relying mostly on the electroporation of ribonucleoproteins (RNPs) into cell wall deficient strains. This requires a constant source of RNPs and limits the application of the technology to strains that are not necessarily the most relevant from a biotechnological point of view. Here, we show that transient expression of the Streptococcus pyogenes Cas9 gene and sgRNAs, targeted to the single-copy nuclear apt9 gene, encoding an adenine phosphoribosyl transferase (APT), results in efficient disruption at the expected locus. Introduction of indels to the apt9 locus results in cell insensitivity to the otherwise toxic compound 2-fluoroadenine (2-FA). We have used agitation with glass beads and particle bombardment to introduce the plasmids carrying the coding sequences for Cas9 and the sgRNAs in a cell-walled strain of C. reinhardtii (CC-125). Using sgRNAs targeting exons 1 and 3 of apt9, we obtained disruption efficiencies of 3 and 30% on preselected 2-FA resistant colonies, respectively. Our results show that transient expression of Cas9 and a sgRNA can be used for editing of the nuclear genome inexpensively and at high efficiency. Targeting of the APT gene could potentially be used as a pre-selection marker for multiplexed editing or disruption of genes of interest.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Steffen Preissler ◽  
Cláudia Rato ◽  
Ruming Chen ◽  
Robin Antrobus ◽  
Shujing Ding ◽  
...  

The endoplasmic reticulum (ER)-localized Hsp70 chaperone BiP affects protein folding homeostasis and the response to ER stress. Reversible inactivating covalent modification of BiP is believed to contribute to the balance between chaperones and unfolded ER proteins, but the nature of this modification has so far been hinted at indirectly. We report that deletion of FICD, a gene encoding an ER-localized AMPylating enzyme, abolished detectable modification of endogenous BiP enhancing ER buffering of unfolded protein stress in mammalian cells, whilst deregulated FICD activity had the opposite effect. In vitro, FICD AMPylated BiP to completion on a single residue, Thr518. AMPylation increased, in a strictly FICD-dependent manner, as the flux of proteins entering the ER was attenuated in vivo. In vitro, Thr518 AMPylation enhanced peptide dissociation from BiP 6-fold and abolished stimulation of ATP hydrolysis by J-domain cofactor. These findings expose the molecular basis for covalent inactivation of BiP.


Sign in / Sign up

Export Citation Format

Share Document