scholarly journals Limited movement of a hybrid zone in relation to regional variation in magnitude of climate change

Author(s):  
Alana Alexander ◽  
Mark Robbins ◽  
Jesse Holmes ◽  
Robert Moyle ◽  
Townsend Peterson

Hybrid zones can provide clear documentation of range shifts in response to climate change and identify loci important to reproductive isolation. Using a deep temporal (36-38 years) comparison of the black-capped (Poecile atricapillus) and Carolina (P. carolinensis) chickadee hybrid zone, we investigated movement of the under-sampled western portion of the zone (western Missouri) as well as investigating whether loci and pathways underpinning reproductive isolation were similar to those from the eastern portion of the hybrid zone. Using 92 birds sampled along the hybrid zone transect in 2016, 68 birds sampled between 1978 and 1980, and 5 additional reference birds sampled from outside the hybrid zone, we generated 11,669 SNPs via ddRADseq. We used these SNPs to interpolate spatially and assess the movement of the hybrid zone interface through time, and to assess variation in introgression among loci. We demonstrate that the interface has moved approximately 5-8 km to the northwest over the last 36-38 years, i.e., at only one-fifth the rate at which the eastern portion of the hybrid zone (e.g. Pennsylvania, Ohio) has moved. Temperature trends across the last 38 years reveal that eastern areas have warmed 50% more than western areas in terms of annual mean temperature, possibly providing an explanation for the slower movement of the hybrid zone in Missouri. Using genomic cline analyses, we detected four genes that showed restricted introgression in both Missouri and Pennsylvania, including Pnoc, a gene involved in metabolism, learning and memory, concordant with previous physiological and behavioral findings on hybrids and the parental species.

The Auk ◽  
2000 ◽  
Vol 117 (1) ◽  
pp. 175-183 ◽  
Author(s):  
Scott F. Pearson ◽  
David A. Manuwal

Abstract Hybrid zones between Townsend's Warblers (Dendroica townsendi) and Hermit Warblers (D. occidentalis) in the Pacific Northwest are narrow relative to estimated dispersal distances and appear to be moving, with Townsend's replacing Hermits. We examined whether the habitat-transition and parental-fitness asymmetry models can explain why these zones are narrow and moving by comparing habitat variables associated with warbler territories in the Washington Cascades hybrid zone. Habitat variables did not differ among phenotypes, suggesting that the habitat-transition model cannot explain the narrow and dynamic nature of this hybrid zone. Habitat characteristics of Hermit Warbler territories did not differ inside versus outside the hybrid zone, also suggesting that this zone is not associated with a region of habitat transition. The lack of difference in habitat use could be the result of comparing variables that are not important to pairing success. However, warblers tended to select territories on west-southwest aspects. South aspects in the southern Washington Cascades are dominated by Douglas fir (Pseudotsuga menziesii) and true fir, which is a habitat selected by female warblers when choosing among territories and males. The parental-fitness asymmetry model does not necessarily make predictions about habitat use within the hybrid zone but predicts the superiority of one parental species over the other. However, if significant overlap occurs in habitat use or niche (as in these warblers), then competition between parental species is likely to occur. To determine whether these species compete, we mapped 12 warbler territories and monitored an additional 94 territories throughout the breeding season and found that all males with neighbors compete for and hold exclusive territories. Thus, the pattern of habitat use and territoriality is consistent with the parental-fitness asymmetry model.


1967 ◽  
Vol 24 (8) ◽  
pp. 1637-1692 ◽  
Author(s):  
D. W. Hagen

A systematic examination was made of isolating mechanisms, as set out by Mayr, that might serve to maintain reproductive isolation between the marine (trachurus) and the freshwater (leiurus) threespine sticklebacks. Field work was conducted in a small British Columbia coastal stream, the Little Campbell River, for[Formula: see text] years and complemented with laboratory experiments. Other streams were included late in the investigation. Leiurus permanently occupies the upper reaches of the stream; trachurus is anadromous and enters the lower reaches to breed in freshwater. Between the breeding grounds of the two, where numbers of both are greatly reduced, hybridization occurs. But it is restricted to a narrow zone.The two species are easily distinguished. Thus, morphological analysis provided firm circumstantial evidence that hybrids are plentiful and that backcrossing occurs, predominately to leiurus. Hybridization was confirmed by rearing offspring under uniform conditions in the laboratory with crosses in all combinations. Such offspring were also used to demonstrate considerable genetic divergence (much of it polygenetic) between leiurus and trachurus.Behavioural experiments demonstrated the absence of ethological isolation and hybrids performed courtship and parental care normally.Nor was genetic incompatibility found in the reared hybrids (F1's or backcrosses); all were vigourous. Seasonal isolation is only partially developed with early spawning migrants of trachurus making a major contribution to hybridization (in the Little Campbell River).Since behavioural and genetic blocks to hybridization are not present, there is no means to prevent hybridization where leiurus and trachurus come together. However, coexistence between the two species is very low. Evidence from observation and experiment in the field and from preference tests showed that ecological isolation is a very powerful barrier to hybridization. The two species show numerous adaptations to the distinctly different habitats they frequent, and each shows a strong affinity for its own habitat. In localities with intermediate or contiguous habitats, coexistence and interbreeding occur. Hybridization is a function of the environment.No selection against hybrids could be detected within the hybrid zone (or with laboratory reared hybrids); yet, one is forced to assume that it is present outside the zone. The very narrow zones as well as the reversed cline that were found indicate there is intense selection against hybrids. What these selective forces are remains to be found. Hybrid zones will probably continue to be poorly understood until a critical analysis of hybrid inferiority is made.Genotypes of either species that remain in the hybrid zone are at a strong selective disadvantage. Hence, reinforcement of ecological isolation probably occurs, and Moore's criticism concerning the spread of such reinforced genotypes would not apply to such cases. Mayr distinguishes between pre- and postmating mechanisms stating that the mode of operation of natural selection will be different for the two. But in threespine sticklebacks one premating mechanism (ecological isolation) and one postmating mechanism (hybrid inferiority) cannot be distinguished. This is so because ecological isolation is the cause of hybrid inferiority.Leiurus and trachurus are reproductively isolated, have well developed isolating mechanisms, and exhibit considerable genetic divergence. The two, then, fulfill the species definition of Mayr. There is no evidence that introgression occurs. Indeed a reversed cline showing a progressive increase in morphological divergence between the two species as the hybrid zone is approached together with the narrow hybrid zone demonstrates that selection severely restricts gene flow. Collections and observations from other streams corroborate those from the study area. Reproductive isolation between leiurus and trachurus seems to be widespread, throughout their range.


2019 ◽  
Vol 110 (5) ◽  
pp. 523-534 ◽  
Author(s):  
Brendan J Pinto ◽  
James Titus-McQuillan ◽  
Juan D Daza ◽  
Tony Gamble

Abstract Determining the mechanisms that create and maintain biodiversity is a central question in ecology and evolution. Speciation is the process that creates biodiversity. Speciation is mediated by incompatibilities that lead to reproductive isolation between divergent populations and these incompatibilities can be observed in hybrid zones. Gecko lizards are a speciose clade possessing an impressive diversity of behavioral and morphological traits. In geckos, however, our understanding of the speciation process is negligible. To address this gap, we used genetic sequence data (both mitochondrial and nuclear markers) to revisit a putative hybrid zone between Sphaerodactylus nicholsi and Sphaerodactylus townsendi in Puerto Rico, initially described in 1984. First, we addressed discrepancies in the literature on the validity of both species. Second, we sampled a 10-km-wide transect across the putative hybrid zone and tested explicit predictions about its dynamics using cline models. Third, we investigated potential causes for the hybrid zone using species distribution modeling and simulations; namely, whether unique climatic variables within the hybrid zone might elicit selection for intermediate phenotypes. We find strong support for the species-level status of each species and no evidence of movement, or unique climatic variables near the hybrid zone. We suggest that this narrow hybrid zone is geographically stable and is maintained by a combination of dispersal and selection. Thus, this work has identified an extant model system within geckos that that can be used for future investigations detailing genetic mechanisms of reproductive isolation in an understudied vertebrate group.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohamed Abdelaziz ◽  
A. Jesús Muñoz-Pajares ◽  
Modesto Berbel ◽  
Ana García-Muñoz ◽  
José M. Gómez ◽  
...  

Hybrid zones have the potential to shed light on evolutionary processes driving adaptation and speciation. Secondary contact hybrid zones are particularly powerful natural systems for studying the interaction between divergent genomes to understand the mode and rate at which reproductive isolation accumulates during speciation. We have studied a total of 720 plants belonging to five populations from two Erysimum (Brassicaceae) species presenting a contact zone in the Sierra Nevada mountains (SE Spain). The plants were phenotyped in 2007 and 2017, and most of them were genotyped the first year using 10 microsatellite markers. Plants coming from natural populations were grown in a common garden to evaluate the reproductive barriers between both species by means of controlled crosses. All the plants used for the field and greenhouse study were characterized by measuring traits related to plant size and flower size. We estimated the genetic molecular variances, the genetic differentiation, and the genetic structure by means of the F-statistic and Bayesian inference. We also estimated the amount of recent gene flow between populations. We found a narrow unimodal hybrid zone where the hybrid genotypes appear to have been maintained by significant levels of a unidirectional gene flow coming from parental populations and from weak reproductive isolation between them. Hybrid plants exhibited intermediate or vigorous phenotypes depending on the analyzed trait. The phenotypic differences between the hybrid and the parental plants were highly coherent between the field and controlled cross experiments and through time. The highly coherent results obtained by combining field, experimental, and genetic data demonstrate the existence of a stable and narrow unimodal hybrid zone between Erysimum mediohispanicum and Erysimum nevadense at the high elevation of the Sierra Nevada mountains.


2017 ◽  
Author(s):  
Sean F. Ryan ◽  
Michael C. Fontaine ◽  
J. Mark Scriber ◽  
Michael E. Pfrender ◽  
Shawn T. O’Neil ◽  
...  

AbstractHybrid zones are a valuable tool for studying the process of speciation and for identifying the genomic regions undergoing divergence and the ecological (extrinsic) and non-ecological (intrinsic) factors involved. Here, we explored the genomic and geographic landscape of divergence in a hybrid zone between Papilio glaucus and Papilio canadensis. Using a genome scan of 28,417 ddRAD SNPs, we identified genomic regions under possible selection and examined their distribution in the context of previously identified candidate genes for ecological adaptations. We showed that differentiation was genome-wide, including multiple candidate genes for ecological adaptations, particularly those involved in seasonal adaptation and host plant detoxification. The Z-chromosome and four autosomes showed a disproportionate amount of differentiation, suggesting genes on these chromosomes play a potential role in reproductive isolation. Cline analyses of significantly differentiated genomic SNPs, and of species diagnostic genetic markers, showed a high degree of geographic coincidence (81%) and concordance (80%) and were associated with the geographic distribution of a climate-mediated developmental threshold (length of the growing season). A relatively large proportion (1.3%) of the outliers for divergent selection were not associated with candidate genes for ecological adaptations and may reflect the presence of previously unrecognized intrinsic barriers between these species. These results suggest that exogenous (climate-mediated) and endogenous (unknown) clines may have become coupled and act together to reinforce reproductive isolation. This approach of assessing divergence across both the genomic and geographic landscape can provide insight about the interplay between the genetic architecture of reproductive isolation and endogenous and exogenous selection.


2017 ◽  
Author(s):  
Michael A. McQuillan ◽  
Timothy C. Roth ◽  
Alex V. Huynh ◽  
Amber M. Rice

AbstractIdentifying the phenotypes underlying postzygotic reproductive isolation is crucial for fully understanding the evolution and maintenance of species. One potential postzygotic isolating barrier that has not yet been examined is learning and memory ability in hybrids. Learning and memory are important fitness-related traits, especially in scatter-hoarding species, where accurate retrieval of hoarded food is vital for winter survival. Here, we test the hypothesis that learning and memory ability can act as a postzygotic isolating barrier by comparing these traits among two scatter-hoarding songbird species, black-capped (Poecile atricapillus), Carolina chickadees (Poecile carolinensis), and their naturally occurring hybrids. In an outdoor aviary setting, we find that hybrid chickadees perform significantly worse on an associative learning spatial task and are worse at solving a novel problem compared to both parental species. Deficiencies in learning and memory abilities could therefore contribute to postzygotic reproductive isolation between chickadee species. Given the importance of learning and memory for fitness, our results suggest that these traits may play an important, but as yet overlooked, role in postzygotic reproductive isolation.


The Auk ◽  
2021 ◽  
Author(s):  
Ari A Rice ◽  
Robert L Curry ◽  
Jason D Weckstein

Abstract Within animal hybrid zones, parasites may determine competitive outcomes between host species and thus affect hybridization dynamics. We addressed this hypothesis by evaluating haemosporidian prevalence and community composition in a rapidly moving hybrid zone between Black-capped Chickadees (Poecile atricapillus) and Carolina Chickadees (P. carolinensis). Using molecular methods, we screened for haemosporidians in multiple chickadee populations across the hybrid zone and investigated whether parasite prevalence varied as a function of admixture among these birds. We identified 36 parasite lineages from 3 haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) but found no genera or lineages more likely to infect any particular chickadee taxon. Instead, haemosporidian prevalence varied across sites and seasons: Leucocytozoon was more prevalent during chickadees’ breeding season, whereas Haemoproteus prevalence peaked during nonbreeding periods. Leucocytozoon infected proportionally fewer birds at the leading edge of the hybrid zone than near its center. However, haemosporidian communities were similar among chickadee populations, and evidence for parasite exchanges between chickadee taxa was lacking. These results underscore the complexity of bird–parasite relationships and suggest that haemosporidians are unlikely to play a major role in the ongoing movement of this hybrid zone.


2021 ◽  
pp. 1-3
Author(s):  
Anda David ◽  
Frédéric Docquier

How do weather shocks influence human mobility and poverty, and how will long-term climate change affect future migration over the course of the 21st century? These questions have gained unprecedented attention in public debates as global warming is already having severe impacts around the world, and prospects for the coming decades get worse. Low-latitude countries in general, and their agricultural areas in particular, have contributed the least to climate change but are the most adversely affected. The effect on people's voluntary and forced displacements is of major concern for both developed and developing countries. On 18 October 2019, Agence Française de Développement (AFD) and Luxembourg Institute of Socio-Economic Research (LISER) organized a workshop on Climate Migration with the aim of uncovering the mechanisms through which fast-onset variables (such as weather anomalies, storms, hurricanes, torrential rains, floods, landslides, etc.) and slow-onset variables (such as temperature trends, desertification, rising sea level, coastal erosion, etc.) influence both people's incentives to move and mobility constraints. This special issue gathers five papers prepared for this workshop, which shed light on (or predict) the effect of extreme weather shocks and long-term climate change on human mobility, and stress the implications for the development community.


Sign in / Sign up

Export Citation Format

Share Document