scholarly journals Global change re-structures alpine plant communities under 15 years of warming, nitrogen, and snow addition: disentangling density independent and dependent effects

Author(s):  
Courtney Collins ◽  
Sarah Elmendorf ◽  
Jane Smith ◽  
Lauren Shoemaker ◽  
Megan Szojka ◽  
...  

Global change is altering patterns of community assembly, with net outcomes dependent on species’ responses to the environment, both directly and mediated through biotic interactions. Here, we assess alpine plant community responses in a 15-year factorial nitrogen addition, warming and snow manipulation experiment. We used a dynamic competition model to estimate the density-dependent and independent processes underlying changes in species-group abundances over time. Density-dependent shifts in competitive interactions drove long-term changes in abundance of species-groups under global change. Density-independent processes were important when counteracting environmental drivers limited the growth response of the dominant species. Furthermore, competitive interactions shifted with environmental change, primarily with nitrogen, and drove non-linear abundance responses across environmental gradients. Our results highlight that global change can either reshuffle species hierarchies or further favor already dominant species; predicting which outcome will occur requires incorporating both density-dependent and independent mechanisms and how they interact across multiple global change factors.

2021 ◽  
Vol 7 (5) ◽  
pp. 333
Author(s):  
Lourdes Morillas ◽  
Javier Roales ◽  
Cristina Cruz ◽  
Silvana Munzi

Lichens are classified into different functional groups depending on their ecological and physiological response to a given environmental stressor. However, knowledge on lichen response to the synergistic effect of multiple environmental factors is extremely scarce, although vital to get a comprehensive understanding of the effects of global change. We exposed six lichen species belonging to different functional groups to the combined effects of two nitrogen (N) doses and direct sunlight involving both high temperatures and ultraviolet (UV) radiation for 58 days. Irrespective of their functional group, all species showed a homogenous response to N with cumulative, detrimental effects and an inability to recover following sunlight, UV exposure. Moreover, solar radiation made a tolerant species more prone to N pollution’s effects. Our results draw attention to the combined effects of global change and other environmental drivers on canopy defoliation and tree death, with consequences for the protection of ecosystems.


2017 ◽  
Vol 77 (1) ◽  
Author(s):  
Svein Birger Wærvågen ◽  
Tom Andersen

Lake Gjerstadvann is a dimictic, oligotrophic, slightly acidified boreal lake in southern Norway (northwest Europe). The planktonic rotifer community of this lake was studied quantitatively during one year in order to investigate the impacts of the local environment and biotic interactions on seasonal succession and habitat selection. Pure suspension feeders (mainly Keratella spp., Conochilus spp., and Kellicottia longispina) together with raptorial graspers or specialised feeders (mainly Polyarthra spp. and Collotheca spp.) dominated the rotifer community over prolonged periods, whereas carnivorous/omnivorous species (mainly Asplanchna priodonta) were extremely uncommon. Low bicarbonate buffering capacity resulted in a distinctive seasonal oscillating pH between 5.0 and 5.6, defining a special acid-transition lake category. The pH values were highest in the productive period during summer, and lowest during ice break-up coinciding with the peak reactive aluminium concentrations of 250-300 mg L-1. As in typical Norwegian boreal perch lakes, the most abundant cladoceran was Bosmina longispina due to perch predation on the genus Daphnia. Rotifer community structure was significantly related to temperature and oxygen (P=0.001 and P=0.022), illustrating the important effects of the seasonal cycle and vertical density stratification. The most significant competition indicator species were B. longispina and Eudiaptomus gracilis (both with P=0.001). A variance partitioning indicated that 14% of the total community composition variance could only be explained by biotic interactions, while 19% of the variance could be attributed to environmental gradients. Of the variance, 23% could not be resolved between biotic interactions and environmental gradients, while a residual of 44% was not explainable by any of the variables. Acid conditions alone cannot account for all the observed changes in the rotifer community of this lake with low humic content, since resource limitation and food competition are also important factors shaping rotifer population dynamics and the community structure.


2018 ◽  
Vol 115 (49) ◽  
pp. E11495-E11504 ◽  
Author(s):  
Paul R. Martin ◽  
Frances Bonier

Urbanization represents an extreme transformation of more natural systems. Populations of most species decline or disappear with urbanization, and yet some species persist and even thrive in cities. What determines which species persist or thrive in urban habitats? Direct competitive interactions among species can influence their distributions and resource use, particularly along gradients of environmental challenge. Given the challenges of urbanization, similar interactions may be important for determining which species persist or thrive in cities; however, their role remains poorly understood. Here, we use a global dataset to test among three alternative hypotheses for how direct competitive interactions and behavioral dominance may influence the breeding occurrence of birds in cities. We find evidence to support the competitive interference hypothesis: behaviorally dominant species were more widespread in urban habitats than closely related subordinate species, but only in taxa that thrive in urban environments (hereafter, urban adapted), and only when dominant and subordinate species overlapped their geographic ranges. This result was evident across diverse phylogenetic groups but varied significantly with a country’s level of economic development. Urban-adapted, dominant species were more widespread than closely related subordinate species in cities in developed, but not developing, countries; countries in economic transition showed an intermediate pattern. Our results provide evidence that competitive interactions broadly influence species responses to urbanization, and that these interactions have asymmetric effects on subordinate species that otherwise could be widespread in urban environments. Results further suggest that economic development might accentuate the consequences of competitive interactions, thereby reducing local diversity in cities.


2020 ◽  
Author(s):  
Erica Nielsen ◽  
Romina Henriques ◽  
Maria Beger ◽  
Robert Toonen ◽  
Sophie von der Heyden

Abstract Background: As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species’ potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare putative environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin (Parechinus angulosus), Common shore crab (Cyclograpsus punctatus), and Granular limpet (Scutellastra granularis). Results: Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus. Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus, but not for C. punctatus. Conclusion: The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses may be better predictors of evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change.


2020 ◽  
Author(s):  
Erica Nielsen ◽  
Romina Henriques ◽  
Maria Beger ◽  
Robert Toonen ◽  
Sophie von der Heyden

Abstract Background: As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species’ potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare the dominant environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin ( Parechinus angulosus ), Common shore crab ( Cyclograpsus punctatu s), and Granular limpet ( Scutellastra granularis ). Results: Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus . Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus , but not for C. punctatus . Conclusion: The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses better predict evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change.


2021 ◽  
Vol 21 (2) ◽  
pp. 171-181
Author(s):  
Huy Pham Quoc ◽  
Minh Nguyen Hoang

From 2003 to 2016, 1,649 samples were collected, covering both the time and space of the Gulf of Tonkin. The results have identified groups of seasonal dominant fish eggs and larvae: Seven species groups in Spring, nine species groups in the Summer, six species groups in Autumn, and four dominant species groups in the Winter. The dominant index (Yi) ranges from 0.02 to 0.26 depending on the species group and each season of the year, the highest in the Goby group - Gobiidae (Yi = 0.26) achieved in the Spring, followed by Herringgroup - Clupeidae reaches Yi = 0.20 in the Summer and the Anchovy group - Engraulidae reaches Yi = 0.16 in the Summer. The highest advantage index is only Yi = 0.09 in the Winter for Unicorn cod species - Bregmaceros macclelandi. During this period, the number of taxa and dominant indexes tended to decrease from Spring to Winter slightly.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1047 ◽  
Author(s):  
Konstantinos Stefanidis ◽  
Eva Papastergiadou

Freshwater ecologists have shown increased interest in assessing biotic responses to environmental change using functional community characteristics. With this article, we investigate the potential of using functional traits of the aquatic plants to assess eutrophication in freshwater lakes. To this end we collected macrophyte and physicochemical data from thirteen lakes in Greece and we applied a trait-based analysis to first identify discrete groups of macrophytes that share common functional traits and then to assess preliminary responses of these groups to water quality gradients. We allocated 11 traits that cover mostly growth form and morphological characteristics to a total of 33 macrophyte species. RLQ and fourth corner analysis were employed to explore potential relationships between species, trait composition and environmental gradients. In addition, a hierarchical cluster analysis was conducted to discriminate groups of plants that share common trait characteristics and then the position of the groups along the environmental gradients was assessed. The results showed total phosphorus, chlorophyll-a, conductivity, pH and Secchi disk depth as main drivers of the environmental gradients. Hierarchical cluster analysis showed a clear separation of macrophyte assemblages with discrete functional characteristics that appeared to associate with different environmental drivers. Thus, rooted submerged plants were related with higher Secchi disk depth, conductivity and alkalinity whereas rooted floating-leaved plants showed a preference for enriched waters with phosphorus and nitrogen. In addition, free-floating plants were related positively with nitrogen and increased pH. Although we did not identify specific trait patterns with environmental drivers, our findings indicate a differentiation of macrophytes based on their functional characteristics along water quality gradients. Overall, the presented results are encouraging for conducting future monitoring studies in lakes focused on the functional plant trait composition, as expanding the current approach to additional lakes and using quantifiable functional characteristics will provide more insight about the potential of trait-based approaches as ecological assessment systems.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2468
Author(s):  
Hongmin Li ◽  
Huihui Chen ◽  
Xiaohong Gu ◽  
Zhigang Mao ◽  
Qingfei Zeng ◽  
...  

Mitten crab aquaculture is prevalent in China, however, knowledge about the threat of cyanobacteria in mitten crab aquaculture-impacted water bodies is limited. Here, seasonal variations of cyanobacteria and their relationships with environmental factors were investigated for Lake Guchenghu area. Results suggested the changes of cyanobacteria community in crab ponds distinguished from the adjacent lake. In the lake, cyanobacterial biomass (3.86 mg/L, 34.6% of the total phytoplankton) was the highest in autumn with the dominance of Oscillatoria, Aphanocapsa and Pesudanabaena. By contrast, in crab ponds, cyanobacteria (46.80 mg/L, 97.2% of the total phytoplankton biomass) were the most abundant in summer when Pesudanabaena and Raphidiopsis were the dominant species. Of particular note was that obviously higher abundance of filamentous and potentially harmful species (e.g., Raphidiopsis raciborskii and Dolichospermum circinale) were observed in ponds compared to the lake. Specifically, water depth (WD), permanganate index (CODMn), total phosphorus (TP), N:P ratio, and NO 2 −-N were the key environmental variables affected cyanobacteria composition. For crab ponds, N:P ratio, water temperature (WT) and TP were the potential environmental drivers of cyanobacteria development. This study highlighted the fact that mitten crab culture had non-negligible influences on the cyanobacteria community and additional attention should be paid to the cyanobacteria dynamics in mitten crab culture-impacted water bodies, especially for those potentially harmful species.


2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Jonas J Lembrechts ◽  
L Broeders ◽  
J De Gruyter ◽  
D Radujković ◽  
I Ramirez-Rojas ◽  
...  

ABSTRACT Creating accurate habitat suitability and distribution models (HSDMs) for soil microbiota is far more challenging than for aboveground organism groups. In this perspective paper, we propose a conceptual framework that addresses several of the critical issues holding back further applications. Most importantly, we tackle the mismatch between the broadscale, long-term averages of environmental variables traditionally used, and the environment as experienced by soil microbiota themselves. We suggest using nested sampling designs across environmental gradients and objectively integrating spatially hierarchic heterogeneity as covariates in HSDMs. Second, to incorporate the crucial role of taxa co-occurrence as driver of soil microbial distributions, we promote the use of joint species distribution models, a class of models that jointly analyze multiple species’ distributions, quantifying both species-specific environmental responses (i.e. the environmental niche) and covariance among species (i.e. biotic interactions). Our approach allows incorporating the environmental niche and its associated distribution across multiple spatial scales. The proposed framework facilitates the inclusion of the true relationships between soil organisms and their abiotic and biotic environments in distribution models, which is crucial to improve predictions of soil microbial redistributions as a result of global change.


Sign in / Sign up

Export Citation Format

Share Document