scholarly journals A Wirelessly  Controlled Shape-Memory Alloy-Based Bistable Metal Swimming Device

Author(s):  
Yu Wan ◽  
Keith Cuff ◽  
Michael J. Serpe

Shape memory Nitinol has long been used for actuation. However, utilizing Nitinol to fabricate novel devices for various applications is a challenge, but has shown incredible promise and impacts. Bistable metal strips are widely adopted for shape morphing purposes (primarily in kid’s toys, e.g., snap bracelets) due to their easy and robust transformation between two states. In this paper, we combine Nitinol shape memory alloy and bistable metal strip to fabricate a swimming actuator with both slow moving and fast snapping capability, akin to an octopus swimming slowly in water, but quickly moving upon encountering a threat. The actuator developed here can also swim in multiple directions, all controlled by a wireless module. Furthermore, we demonstrate that an on-board sensor can be incorporated for potential environmental monitoring applications. Taken together, along with the fact that the device developed here has no mechanical parts, makes this  an interesting potential alternative to more expensive, and energy consuming boats.

2014 ◽  
Vol 629 ◽  
pp. 235-239
Author(s):  
Priyanka Subhash Gaikwad ◽  
Ermira Junita Abdullah ◽  
D.L. Majid ◽  
Azmin Shakrine Mohd Rafie

This paper presents a variable deflection control of a fiber glass composite plate system using shape memory alloy (SMA) actuators. The technique on changing the camber of plate needs to be developed as it is the most investigated approach of shape morphing. Gradual changes of the camber along the span can create controllable twisting of the composite plate. The necessary camber change is pursued either by reconfiguration of the underlying structure or the shape changing of the composite plate or smart composite. In this proposed platform, strain gauges are used to measure the strain of the plate in a single cantilever mode while nickel titanium (NiTi) Shape Memory Alloy (SMA) wires are used as actuators to actuate the composite plate, which are controlled using Proportional-Integral-Derivative (PID) controller. In this research six strain gauges were placed at different location of the plate: tip, mid and root part of the plate. From the experimental result, it was found that the mid part of the plate had the highest change in strain value and the control system using input from the strain gauge located there produced the best performance compared to those located at the tip and root of the plate.


2003 ◽  
Vol 112 ◽  
pp. 519-522 ◽  
Author(s):  
W. Cai ◽  
J. X. Zhang ◽  
Y. F. Zheng ◽  
L. C. Zhao

Author(s):  
Ricardo Alexandre Amar de Aguiar ◽  
Pedro Manuel Calas Lopes Pacheco ◽  
Brenno Tavares Duarte

Author(s):  
Marcelio Ronnie Dantas de Sá ◽  
Armando Wilmans Nunes da Fonseca Júnior ◽  
Yuri Moraes ◽  
Antonio Almeida Silva

Sign in / Sign up

Export Citation Format

Share Document