scholarly journals Squalene epoxidase promotes hepatocellular carcinoma development by activating STRAP transcription and TGF-β/SMAD signaling

Author(s):  
Wu Yin ◽  
zhirui zhang ◽  
Wei Wu ◽  
Hao Jiao ◽  
Yuzhong Chen ◽  
...  

Background and Purpose Squalene epoxidase (SQLE) is a key enzyme involved in cholesterol biosynthesis, but increasing evidence reveals that SQLE is abnormally expressed in some types of malignant tumors, and the underlying mechanism remains poorly understood. Experimental Approach Bioinformatics analysis and RNA sequencing were applied to detect to differentially expressed genes in clinical HCC tumors. AnnexinV-FITC/PI, EdU assay, transwell, IHC staining, cytoskeleton F-actin filaments assay, RNA sequencing, dual-luciferase reporters and HE staining were evaluated to investigate the pharmacological effects and possible mechanisms of SQLE. Key Results We found that SQLE expression is specifically elevated in HCC tumors, correlating with poor clinical outcomes. SQLE promoted HCC growth, EMT, and metastasis both in vitro and in vivo. In contrast, silencing of SQLE expression prevented HCC development. Both RNA-seq and functional experiments revealed that the protumorigenic effect of SQLE on HCC is closely related to the activation of cellular TGF-β/SMAD signaling, but interestingly, the stimulatory effect of SQLE on TGF-β/SMAD signaling and HCC development is also critically dependent on STRAP, a serine and threonine kinase. SQLE expression is well correlated with STRAP in HCC, and further, to amplify TGF-β/SMAD signaling, SQLE even transcriptionally increased STRAP gene expression mediated by the trans-acting factor AP-2α. Finally, as a chemical inhibitor of SQLE, NB-598 markedly inhibited HCC cell growth and tumor development in mouse models. Conclusions and Implications Taken together, SQLE serves as an oncogene in HCC development by activating TGF-β/SMAD signaling, and targeting SQLE could be useful in drug development and therapy for HCC.

2021 ◽  
Vol 22 (3) ◽  
pp. 1407
Author(s):  
Hongxia Liu ◽  
Wang Zheng ◽  
Qianping Chen ◽  
Yuchuan Zhou ◽  
Yan Pan ◽  
...  

Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14541-e14541
Author(s):  
Hui Yu ◽  
Si Sun

e14541 Background: Recent research has classified lung adenocarcinoma patients with KRAS mutation into three subtypes by co-occurring genetic events in TP53 (KP subgroup), STK11/LKB1 (KL subgroup) and CDKN2A/B inactivation coupled with low expression of the TTF-1 (KC subgroup). The aim of this study was to identify novel biomarkers through searching the candidate molecules that contributing to lung adenocarcinoma pathogenesis, especially KC subtype. Methods: We analyzed the publicly available database and identified the candidate REG4 using the E-GEOD-31210 dataset, and then confirmed by TCGA dataset. In addition, an independent cohort of 55 clinical samples was analyzed by quantitative real-time PCR analysis. Functional studies and RNA sequencing were performed after the silencing REG4 expression. Results: REG4, an important regulator of gastro-intestinal carcinogenesis, was highly expressed in KRAS mutated lung adenocarcinoma with low expression of TTF-1 (KC subtype). The results were validated both by gene expression analysis and immunohistochemistry study in an independent 55 clinical samples from Fudan University Shanghai Cancer Center. Further in vitro and in vivo functional assays revealed silencing REG4 expression significantly reduce cancer cell proliferation and tumorigenesis. Moreover, RNA sequencing and GSEA analysis displayed that REG4 knockdown might induce the cell cycle arrest by regulating G2/M checkpoint and E2F targets. Conclusions: Our results indicate that REG4 plays an important role in KRAS-driven lung cancer pathogenesis and is a novel biomarker of lung adenocarcinoma subtype. Future studies are required to clarify the underlying mechanism of REG4 in the division and proliferation of KC tumors and its potential therapeutic value.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nuoya Li ◽  
Lei Wu ◽  
Xingye Zuo ◽  
Huilong Luo ◽  
Yanling Sheng ◽  
...  

Gastric cancer (GC) is one of the most common malignant tumors all over the world. And recurrence and metastasis are still the main causes of low survival rate for advanced GC. USP1 has been shown overexpressed in multiple cancers, which indicate its important biomarker in tumorigenesis and development. Our study is aimed at defining the exact role of USP1 on GC metastasis and the underlying mechanism. USP1 was firstly found overexpressed in GC tissues and relatively high-expression levels conferred poor survival rates. Then, real-time cellular analysis (RTCA) showed that USP1 knockdown inhibited GC metastasis both in vitro and in vivo. Mechanically, we demonstrated that USP1 promoted GC metastasis via upregulating ID2 expression and further confirmed that USP1 stabilized ID2 expression through deubiquitinating ID2 in GC. In conclusion, our study showed that USP1 promoted GC metastasis via stabilizing ID2 expression, which provides a potential biomarker and therapy target for GC.


2022 ◽  
Vol 20 (2) ◽  
pp. 359-364
Author(s):  
Zhen You ◽  
Bei Li ◽  
Jun Gao ◽  
Jiong Lu ◽  
Ruihua Xu

Purpose: To investigate the effect of azaindole on proliferation of liver cancer cells, as well as the underlying mechanism. Methods: Colony forming and 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) assays were used to determine the effect of azaindole on cell proliferation. A tumor model was established through subcutaneous administration of HEPG2 cells to rats. Thereafter, in vivo tumor development was measured using Vernier caliper. Results: The proliferation potential of HEPG2 and SNU-398 cells was markedly and dose-dependently suppressed by treatment with azaindole at doses of 2, 4, 8, 16 and 20 μM (p < 0.05). The expression levels of Ki67 and PCNA levels were significantly down-regulated in HEPG2 and SNU-398 cells on treatment with 20 μM azaindole. Moreover, azaindole significantly suppressed mRNA and protein expressions of KIFC1 in HEPG2 and SNU-398 cells (p < 0.05). Tumor volume in azaindole-treated rats on day 21 was greatly reduced, while KIFC1 expression in azaindole-treated rat tumor tissue was significantly down-regulated, when compared to the model group (p < 0.05). Conclusion: Azaindole targets proliferation of liver cancer cells in vitro and inhibits tumor growth in vivo through a mechanism involving down-regulation of KIFCI expression. Thus, azaindole is a potential therapeutic candidate for liver cancer.


2019 ◽  
Vol 294 (25) ◽  
pp. 10006-10017 ◽  
Author(s):  
XiaoHui Wang ◽  
Cheng Ji ◽  
HongHan Zhang ◽  
Yu Shan ◽  
YiJie Ren ◽  
...  

Nucleus accumbens–associated protein-1 (NAC1) is a transcriptional repressor encoded by the NACC1 gene, which is amplified and overexpressed in various human cancers and plays critical roles in tumor development, progression, and drug resistance. NAC1 has therefore been explored as a potential therapeutic target for managing malignant tumors. However, effective approaches for effective targeting of this nuclear protein remain elusive. In this study, we identified a core unit consisting of Met7 and Leu90 in NAC1's N-terminal domain (amino acids 1–130), which is critical for its homodimerization and stability. Furthermore, using a combination of computational analysis of the NAC1 dimerization interface and high-throughput screening (HTS) for small molecules that inhibit NAC1 homodimerization, we identified a compound (NIC3) that selectively binds to the conserved Leu-90 of NAC1 and prevents its homodimerization, leading to proteasomal NAC1 degradation. Moreover, we demonstrate that NIC3-mediated down-regulation of NAC1 protein sensitizes drug-resistant tumor cells to conventional chemotherapy and enhances the antimetastatic effect of the antiangiogenic agent bevacizumab both in vitro and in vivo. These results suggest that small-molecule inhibitors of NAC1 homodimerization may effectively sensitize cancer cells to some anticancer agents and that NAC1 homodimerization could be further explored as a potential therapeutic target in the development of antineoplastic agents.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Shuilian Chen ◽  
Xi Chen ◽  
Qian Luo ◽  
Xuan Liu ◽  
Xiao Wang ◽  
...  

AbstractExosomes derived from tumor cells play a key role in tumor development. In the present study, we identified the bioactivity of exosomes released from WERI-Rb1 retinoblastoma cells in tumor angiogenesis, as well as the underlying mechanism, through biochemical methods and animal experiments. Our in vitro data showed that exosomes could be engulfed by human vesicle endothelial cells (HUVECs), significantly promote cell viability and induce an inflammatory response in HUVECs by increasing the expression of a series of related genes, such as IL-1, IL-6, IL-8, MCP-1, VCAM1, and ICAM1. Significant increases in migration and tube formation were also observed in the HUVECs incubated with exosomes. Moreover, experiments with a nude mouse xenotransplantation model showed that exosomes injected near tumors could be strongly absorbed by tumor cells. The numbers of endothelial cells and blood vessels were significantly increased in tumor tissues treated with exosomes compared to control tissues. Furthermore, to reveal the mechanism underlying exosome-mediated angiogenesis in retinoblastoma, we analyzed the levels of 12 microRNAs in the exosomes. Specifically, our data showed that miR-92a-3p was enriched in RB exosomes. Accordingly, miR-92a-3p was increased in the HUVECs incubated with these exosomes. After treatment with a miR-92a-3p inhibitor, the promoting effect of exosomes on the migration and tube formation of HUVECs was significantly abrogated. The expression of the angiogenesis-related genes mentioned above was markedly decreased in HUVECs. Similarly, treatment with a microRNA mimic also demonstrated that miR-92a-3p was involved in the angiogenesis of HUVECs. More importantly, bioinformatics analysis predicted that Krüppel-like factor 2 (KLF2), a member of the KLF family of zinc-finger transcription factors, might be an active target of miR-92a-3p. Notably, this prediction was confirmed both in vitro and in vivo. Thus, our work suggests that exosomal miR-92a-3p is involved in tumor angiogenesis and might be a promising therapeutic candidate for retinoblastoma.


Author(s):  
А.А. Раецкая ◽  
С.В. Калиш ◽  
С.В. Лямина ◽  
Е.В. Малышева ◽  
О.П. Буданова ◽  
...  

Цель исследования. Доказательство гипотезы, что репрограммированные in vitro на М3 фенотип макрофаги при введении в организм будут существенно ограничивать развитие солидной карциномы in vivo . Методика. Рост солидной опухоли инициировали у мышей in vivo путем подкожной инъекции клеток карциномы Эрлиха (КЭ). Инъекцию макрофагов с нативным М0 фенотипом и с репрограммированным M3 фенотипом проводили в область формирования солидной КЭ. Репрограммирование проводили с помощью низких доз сыворотки, блокаторов факторов транскрипции STAT3/6 и SMAD3 и липополисахарида. Использовали две схемы введения макрофагов: раннее и позднее. При раннем введении макрофаги вводили на 1-е, 5-е, 10-е и 15-е сут. после инъекции клеток КЭ путем обкалывания макрофагами с четырех сторон область развития опухоли. При позднем введении, макрофаги вводили на 10-е, 15-е, 20-е и 25-е сут. Через 15 и 30 сут. после введения клеток КЭ солидную опухоль иссекали и измеряли ее объем. Эффект введения макрофагов оценивали качественно по визуальной и пальпаторной характеристикам солидной опухоли и количественно по изменению ее объема по сравнению с группой без введения макрофагов (контроль). Результаты. Установлено, что M3 макрофаги при раннем введении от начала развития опухоли оказывают выраженный антиопухолевый эффект in vivo , который был существенно более выражен, чем при позднем введении макрофагов. Заключение. Установлено, что введение репрограммированных макрофагов M3 ограничивает развитие солидной карциномы в экспериментах in vivo . Противоопухолевый эффект более выражен при раннем введении М3 макрофагов. Обнаруженные в работе факты делают перспективным разработку клинической версии биотехнологии ограничения роста опухоли, путем предварительного программирования антиопухолевого врожденного иммунного ответа «в пробирке». Aim. To verify a hypothesis that macrophages reprogrammed in vitro to the M3 phenotype and injected into the body substantially restrict the development of solid carcinoma in vivo . Methods. Growth of a solid tumor was initiated in mice in vivo with a subcutaneous injection of Ehrlich carcinoma (EC) cells. Macrophages with a native M0 phenotype or reprogrammed towards the M3 phenotype were injected into the region of developing solid EC. Reprogramming was performed using low doses of serum, STAT3/6 and SMAD3 transcription factor blockers, and lipopolysaccharide. Two schemes of macrophage administration were used: early and late. With the early administration, macrophages were injected on days 1, 5, 10, and 15 following the injection of EC cells at four sides of the tumor development area. With the late administration, macrophages were injected on days 10, 15, 20, and 25. At 15 and 30 days after the EC cell injection, the solid tumor was excised and its volume was measured. The effect of macrophage administration was assessed both qualitatively by visual and palpation characteristics of solid tumor and quantitatively by changes in the tumor volume compared with the group without the macrophage treatment. Results. M3 macrophages administered early after the onset of tumor development exerted a pronounced antitumor effect in vivo , which was significantly greater than the antitumor effect of the late administration of M3 macrophages. Conclusion. The observed significant inhibition of in vivo growth of solid carcinoma by M3 macrophages makes promising the development of a clinical version of the biotechnology for restriction of tumor growth by in vitro pre-programming of the antitumor, innate immune response.


Author(s):  
Xiaohua Jie ◽  
William Pat Fong ◽  
Rui Zhou ◽  
Ye Zhao ◽  
Yingchao Zhao ◽  
...  

AbstractRadioresistance is regarded as the main barrier to effective radiotherapy in lung cancer. However, the underlying mechanisms of radioresistance remain elusive. Here, we show that lysine-specific demethylase 4C (KDM4C) is overexpressed and correlated with poor prognosis in lung cancer patients. We provide evidence that genetical or pharmacological inhibition of KDM4C impairs tumorigenesis and radioresistance in lung cancer in vitro and in vivo. Moreover, we uncover that KDM4C upregulates TGF-β2 expression by directly reducing H3K9me3 level at the TGF-β2 promoter and then activates Smad/ATM/Chk2 signaling to confer radioresistance in lung cancer. Using tandem affinity purification technology, we further identify deubiquitinase USP9X as a critical binding partner that deubiquitinates and stabilizes KDM4C. More importantly, depletion of USP9X impairs TGF-β2/Smad signaling and radioresistance by destabilizing KDM4C in lung cancer cells. Thus, our findings demonstrate that USP9X-mediated KDM4C deubiquitination activates TGF-β2/Smad signaling to promote radioresistance, suggesting that targeting KDM4C may be a promising radiosensitization strategy in the treatment of lung cancer.


2021 ◽  
Vol 9 (7) ◽  
pp. e002383
Author(s):  
Jin-Li Wei ◽  
Si-Yu Wu ◽  
Yun-Song Yang ◽  
Yi Xiao ◽  
Xi Jin ◽  
...  

PurposeRegulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC.Experimental designUsing the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration. Then, in vivo and in vitro experiments were performed to verify the correlation and explore the underlying mechanism.ResultsWe revealed that GTP cyclohydrolase 1 (GCH1) expression was positively correlated with Tregs infiltration and high GCH1 expression was associated with reduced overall survival in TNBC. In vivo and in vitro experiments showed that GCH1 increased Tregs infiltration, decreased apoptosis, and elevated the programmed cell death-1 (PD-1)-positive fraction. Metabolomics analysis indicated that GCH1 overexpression reprogrammed tryptophan metabolism, resulting in L-5-hydroxytryptophan (5-HTP) accumulation in the cytoplasm accompanied by kynurenine accumulation and tryptophan reduction in the supernatant. Subsequently, aryl hydrocarbon receptor, activated by 5-HTP, bound to the promoter of indoleamine 2,3-dioxygenase 1 (IDO1) and thus enhanced the transcription of IDO1. Furthermore, the inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine (DAHP) decreased IDO1 expression, attenuated tumor growth, and enhanced the tumor response to PD-1 blockade immunotherapy.ConclusionsTumor-cell-intrinsic GCH1 induced immunosuppression through metabolic reprogramming and IDO1 upregulation in TNBC. Inhibition of GCH1 by DAHP serves as a potential immunometabolic strategy in TNBC.


Sign in / Sign up

Export Citation Format

Share Document