scholarly journals Conformal and Disformal Structure of 3D Circularly Symmetric Static Metric in f(R) Theory of Gravity

Author(s):  
Muhammad Ramzan ◽  
Murtaza Ali ◽  
Fiaz Hussain

Conformal vector fields are treated as generalization of homothetic vector fields while disformal vector fields are defined through disformal transformations which are generalization of conformal transformations, therefore it is important to study conformal and disformal vector fields. In this paper, conformal and disformal structure of 3D (Three Dimensional) circularly symmetric static metric is discussed in the framework of f(R) theory of gravity. The purpose of this paper is twofold. Firstly, we have found some dust matter solutions of EFEs (Einstein Field Equations) by considering 3D circularly symmetric static metric in the f(R) theory of gravity. Secondly, we have found CKVFs (Conformal Killing Vector Fields) and DKVFs (Disformal Killing Vector Fields) of the obtained solutions by means of some algebraic and direct integration techniques. A metric version of f(R) theory of gravity is used to explore the solutions and dust matter as a source of energy momentum tensor. This study reveals that no proper DVFs exists. Here, DVFs for the solutions under consideration are either HVFs (Homothetic Vector Fields) or KVFs (Killing Vector Fields) in the f(R) theory of gravity. In this study, two cases have been discussed. In the first case, both CKVFs and DKVFs become HVFs with dimension three. In the second case, there exists two subcases. In the first subcase, DKVFs become HVFs with dimension seven. In the second subcase, CKVFs and DKVFs become KVFs having dimension four.

2018 ◽  
Vol 15 (11) ◽  
pp. 1850193 ◽  
Author(s):  
Ghulam Shabbir ◽  
Muhammad Ramzan ◽  
Fiaz Hussain ◽  
S. Jamal

A classification of static spherically symmetric space-times in [Formula: see text] theory of gravity according to their conformal vector fields (CVFs) is presented. For this analysis, a direct integration technique is used. This study reveals that for static spherically symmetric space-times in [Formula: see text] theory of gravity, CVFs are just Killing vector fields (KVFs) or homothetic vector fields (HVFs). For this classification, six cases have been discussed out of which there exists only one case for which CVFs become HVFs while in the rest of the cases CVFs become KVFs.


2019 ◽  
Vol 34 (38) ◽  
pp. 1950320 ◽  
Author(s):  
Fiaz Hussain ◽  
Ghulam Shabbir ◽  
S. Jamal ◽  
Muhammad Ramzan

The aim of this paper is to find proper conformal vector fields of some Bianchi type II spacetimes in the f[Formula: see text](R[Formula: see text]) theory of gravity using direct integration technique. In this study, seven cases have been discussed. Studying each case in detail, it is shown that the spacetimes under consideration do not admit proper conformal vector fields. Conformal vector fields are either homothetic vector fields or Killing vector fields.


2019 ◽  
Vol 34 (24) ◽  
pp. 1950189 ◽  
Author(s):  
M. Jamil Khan ◽  
Ghulam Shabbir ◽  
M. Ramzan

The purpose of this paper is to find proper homothetic vector fields in plane symmetric perfect fluid static spacetimes in the [Formula: see text] theory of gravity by using direct integration technique. In this study, there exist six cases. Studying each case in detail, we found that in four cases proper homothetic vector fields exist while in the other two cases homothetic vector fields become Killing vector fields.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050149 ◽  
Author(s):  
Ghulam Shabbir ◽  
Fiaz Hussain ◽  
Shabeela Malik ◽  
Muhammad Ramzan

The aim of this paper is to investigate the conformal vector fields (CVFs) for some vacuum classes of static spherically symmetric space-times in [Formula: see text] gravity. First, we have explored the space-times by solving the Einstein field equations in [Formula: see text] gravity. These solutions have been obtained by imposing various conditions on the space-time components and selecting separable form of the bivariate function [Formula: see text]. Second, we find the CVFs of the obtained space-times via direct integration approach. The overall study reveals that there exist 17 cases. From these 17 cases, the space-times in five cases admit proper CVFs whereas in rest of the 12 cases, CVFs become Killing vector fields (KVFs). We have also calculated the torsion scalar and boundary term for each of the obtained solutions.


2019 ◽  
Vol 34 (11) ◽  
pp. 1950079 ◽  
Author(s):  
Ghulam Shabbir ◽  
Fiaz Hussain ◽  
A. H. Kara ◽  
Muhammad Ramzan

The purpose of this paper is to find conformal vector fields of some perfect fluid Kantowski–Sachs and Bianchi type III spacetimes in the [Formula: see text] theory of gravity using direct integration technique. In this study, there exist only eight cases. Studying each case in detail, we found that in two cases proper conformal vector fields exist while in the rest of the cases, conformal vector fields become Killing vector fields. The dimension of conformal vector fields is either 4 or 6.


2018 ◽  
Vol 33 (37) ◽  
pp. 1850222 ◽  
Author(s):  
Ghulam Shabbir ◽  
Fiaz Hussain ◽  
F. M. Mahomed ◽  
Muhammad Ramzan

We first find the dust solutions of static plane symmetric spacetimes in the theory of f(R) gravity. Then using the direct integration technique on the solutions obtained, we deduce the conformal vector fields. This is performed in the context of f(R) theory of gravity. There exist six cases. Out of these, in five cases the spacetimes become conformally flat and admit 15 conformal vector fields, whereas in the sixth case, conformal vector fields become Killing vector fields.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550111 ◽  
Author(s):  
Mircea Crasmareanu ◽  
Camelia Frigioiu

Fix ξ a unitary vector field on a Riemannian manifold M and γ a non-geodesic Frenet curve on M satisfying the Rytov law of polarization optics. We prove in these conditions that γ is a Legendre curve for ξ if and only if the γ-Fermi–Walker covariant derivative of ξ vanishes. The cases when γ is circle or helix as well as ξ is (conformal) Killing vector filed or potential vector field of a Ricci soliton are analyzed and an example involving a three-dimensional warped metric is provided. We discuss also K-(para)contact, particularly (para)Sasakian, manifolds and hypersurfaces in complex space forms.


2021 ◽  
Vol 13(62) (2) ◽  
pp. 451-462
Author(s):  
Lakehal Belarbi

In this work we consider the three-dimensional generalized symmetric space, equipped with the left-invariant pseudo-Riemannian metric. We determine Killing vector fields and affine vectors fields. Also we obtain a full classification of Ricci, curvature and matter collineations


2020 ◽  
Vol 17 (14) ◽  
pp. 2050212
Author(s):  
Zafar Iqbal ◽  
Joydeep Sengupta ◽  
Subenoy Chakraborty

The aim of this paper is to investigate Killing magnetic trajectories of varying electrically charged particles in a three-dimensional warped product [Formula: see text] with positive warping function [Formula: see text], where [Formula: see text] is an open interval in [Formula: see text] equipped with an induced semi-Euclidean metric on [Formula: see text]. First, Killing vector fields on [Formula: see text] are characterized and it is observed that lifts to [Formula: see text] of Killing vector fields tangent to [Formula: see text] are also Killing on [Formula: see text]. Now, any Killing vector field on [Formula: see text] corresponds to a Killing magnetic field on [Formula: see text]. Magnetic trajectories (also known as magnetic curves) of charged particles which move under the influence of Lorentz force generated by Killing magnetic fields on [Formula: see text] are obtained in both Riemannian and Lorentzian cases. Moreover, some examples are exhibited with pictures determining Killing magnetic trajectories in hyperbolic [Formula: see text]-space [Formula: see text] modeled by the Riemannian warped product [Formula: see text]. Furthermore, some examples of spacelike, timelike and lightlike Killing magnetic trajectories are given with their possible graphs in the Lorentzian warped product [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document