scholarly journals Some formulas for Apostol-Euler polynomials associated with Hurwitz zeta function at rational arguments

2009 ◽  
Vol 3 (2) ◽  
pp. 336-346 ◽  
Author(s):  
Qiu-Ming Luo

We give some explicit relationships between the Apostol-Euler polynomials and generalized Hurwitz-Lerch Zeta function and obtain some series representations of the Apostol-Euler polynomials of higher order in terms of the generalized Hurwitz-Lerch Zeta function. Several interesting special cases are also shown.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
S. Gaboury ◽  
A. Bayad

By making use of some explicit relationships between the Apostol-Bernoulli, Apostol-Euler, Apostol-Genocchi, and Apostol-Frobenius-Euler polynomials of higher order and the generalized Hurwitz-Lerch zeta function as well as a new expansion formula for the generalized Hurwitz-Lerch zeta function obtained recently by Gaboury and Bayad , in this paper we present some series representations for these polynomials at rational arguments. These results provide extensions of those obtained by Apostol (1951) and by Srivastava (2000).


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Alejandro Urieles ◽  
William Ramírez ◽  
María José Ortega ◽  
Daniel Bedoya

Abstract The main purpose of this paper is to investigate the Fourier series representation of the generalized Apostol-type Frobenius–Euler polynomials, and using the above-mentioned series we find its integral representation. At the same time applying the Fourier series representation of the Apostol Frobenius–Genocchi and Apostol Genocchi polynomials, we obtain its integral representation. Furthermore, using the Hurwitz–Lerch zeta function we introduce the formula in rational arguments of the generalized Apostol-type Frobenius–Euler polynomials in terms of the Hurwitz zeta function. Finally, we show the representation of rational arguments of the Apostol Frobenius Euler polynomials and the Apostol Frobenius–Genocchi polynomials.


Author(s):  
Gauhar Rahman ◽  
KS Nisar ◽  
Shahid Mubeen

In this paper, we define a (p,v)-extension of Hurwitz-Lerch Zeta function by considering an extension of beta function defined by Parmar et al. [J. Classical Anal. 11 (2017) 81–106]. We obtain its basic properties which include integral representations, Mellin transformation, derivative formulas and certain generating relations. Also, we establish the special cases of the main results.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 48
Author(s):  
Kottakkaran Sooppy Nisar

The main aim of this paper is to provide a new generalization of Hurwitz-Lerch Zeta function of two variables. We also investigate several interesting properties such as integral representations, summation formula, and a connection with the generalized hypergeometric function. To strengthen the main results we also consider some important special cases.


Author(s):  
Rakesh K. Parmar ◽  
R. K. Raina

AbstractOur purpose in this paper is to consider a generalized form of the extended Hurwitz-Lerch Zeta function. For this extended Hurwitz-Lerch Zeta function, we obtain some classical properties which includes various integral representations, a differential formula, Mellin transforms and certain generating relations. We further consider an application to probability distributions and also point out some important special cases of the main results.


Author(s):  
M. A. Pathan ◽  
Maged G. Bin-Saad ◽  
J. A. Younis

The main objective of this work is to introduce a new generalization of Hurwitz-Lerch zeta function of two variables. Also, we investigate several interesting properties such as integral representations, operational connections and summation formulas.


Author(s):  
TAKASHI NAKAMURA

AbstractLet 0 < a ⩽ 1, s, z ∈ ${\mathbb{C}}$ and 0 < |z| ⩽ 1. Then the Hurwitz–Lerch zeta function is defined by Φ(s, a, z) ≔ ∑∞n = 0zn(n + a)− s when σ ≔ ℜ(s) > 1. In this paper, we show that the Hurwitz zeta function ζ(σ, a) ≔ Φ(σ, a, 1) does not vanish for all 0 < σ < 1 if and only if a ⩾ 1/2. Moreover, we prove that Φ(σ, a, z) ≠ 0 for all 0 < σ < 1 and 0 < a ⩽ 1 when z ≠ 1. Real zeros of Hurwitz–Lerch type of Euler–Zagier double zeta functions are studied as well.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
H. M. Srivastava ◽  
Sébastien Gaboury ◽  
Richard Tremblay

We derive several new expansion formulas involving an extended multiparameter Hurwitz-Lerch zeta function introduced and studied recently by Srivastava et al. (2011). These expansions are obtained by using some fractional calculus methods such as the generalized Leibniz rules, the Taylor-like expansions in terms of different functions, and the generalized chain rule. Several (known or new) special cases are also given.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 100
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

The aim of the current document is to evaluate a quadruple integral involving the Chebyshev polynomial of the first kind Tn(x) and derive in terms of the Hurwitz-Lerch zeta function. Special cases are evaluated in terms of fundamental constants. The zero distribution of almost all Hurwitz-Lerch zeta functions is asymmetrical. All the results in this work are new.


Sign in / Sign up

Export Citation Format

Share Document