scholarly journals Strong disk property for domains in open Riemann surfaces

Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1711-1716
Author(s):  
Makoto Abe ◽  
Gou Nakamura

We study the relation between the holomorphic approximation property and the strong disk property for an open set of an open Riemann surface or a Stein space of pure dimension 1.

2017 ◽  
Vol 60 (2) ◽  
pp. 300-308 ◽  
Author(s):  
Paul M. Gauthier ◽  
Fatemeh Sharifi

AbstractIt is known that if E is a closed subset of an open Riemann surface R and f is a holomorphic function on a neighbourhood of E, then it is “usually” not possible to approximate f uniformly by functions holomorphic on all of R. We show, however, that for every open Riemann surface R and every closed subset E ⸦ R, there is closed subset F ⸦ E that approximates E extremely well, such that every function holomorphic on F can be approximated much better than uniformly by functions holomorphic on R.


1963 ◽  
Vol 22 ◽  
pp. 211-217 ◽  
Author(s):  
Nobushige Toda ◽  
Kikuji Matsumoto

Some years ago, Kuramochi gave in his paper [5] a very interesting theorem, which can be stated as follows.THEOREM OF KURAMOCHI. Let R be a hyperbolic Riemann surface of the class Of OHR(OHD,resp.). Then, for any compact subset K of R such that R—K is connected, R—K as an open Riemann surface belongs to the class 0AB(OAD resp.).


1951 ◽  
Vol 3 ◽  
pp. 73-79 ◽  
Author(s):  
Kiyoshi Noshiro

Recently the writer has obtained some results concerning meromorphic or algebroidal functions with the set of essential singularities of capacity zero, with an aid of a theorem of Evans. In the present paper, suggested from recent interesting papers of Sario and Pfluger, the writer will extend his results to single-valued analytic functions defined on open abstract Riemann surfaces with null boundary in the sense of Nevanlinna, using a lemma instead of Evans’ theorem.


1951 ◽  
Vol 3 ◽  
pp. 141-145 ◽  
Author(s):  
Masatsugu Tsuji

Let F be an open Riemann surface spread over the z-plane. We say that F is of positive or null boundary, according as there exists a Green’s function on F or not, Let u(z) be a harmonic function on Fand be its Dirichlet integral As R. Nevanlinna proved, if F is of null boundary, there exists no one-valued non-constant harmonic function on F5 whose Dirichlet integral is finite, This Nevanlinna’s theorem was proved very simply by Kuroda.


1979 ◽  
Vol 31 (5) ◽  
pp. 1072-1076
Author(s):  
Mikio Niimura

The classical uniqueness theorems of Riesz and Koebe show an important characteristic of boundary behavior of analytic functions in the unit disc. The purpose of this note is to discuss these uniqueness theorems on hyperbolic Riemann surfaces. It will be necessary to give additional hypotheses because Riemann surfaces can be very nasty. So, in this note the Wiener compactification will be used as ideal boundary of Riemann surfaces. The Theorem, Corollaries 1, 2 and 3 are of Riesz type, Riesz-Nevanlinna type, Koebe type and Koebe-Nevanlinna type respectively. Corollaries 4 and 5 are general forms of Corollaries 2 and 3 respectively.Let f be a mapping from an open Riemann surface R into a Riemann surface R′.


1978 ◽  
Vol 70 ◽  
pp. 41-45
Author(s):  
Shigeo Segawa

Consider an open Riemann surface R and a single-valued meromorphic function w = f(p) defined on R. A value w0 in the extended complex plane is said to be a cluster value for w = f(p) if there exists a sequence {pn } in R accumulating at the ideal boundary of R such that


1976 ◽  
Vol 28 (4) ◽  
pp. 885-888 ◽  
Author(s):  
P. M. Gauthier ◽  
L. A. Rubel

Let denote the space of functions holomorphic on an open Riemann surface R, where has the topology of uniform convergence on compact sets. In this note, we characterize the dual space *. The result is not new, for it is implicitly contained in the more general results of Tillmann [5] and, in case R is planar, in those of Köthe [4]. However, the paper of Gunning and Narasimhan [3], which appeared subsequently, allows us to give a short proof of this important result. Actually, our characterization is a natural one in terms of differentials, while the Köthe-Tillmann characterization is in terms of functions, but we show that these two characterizations are isomorphic. We end our paper by using our characterization to prove an interpolation result. The second author gratefully acknowledges a helpful discussion with Professor George Szekeres.


1984 ◽  
Vol 36 (4) ◽  
pp. 747-755 ◽  
Author(s):  
Shoji Kobayashi

In this paper we are concerned with the space BMOA of analytic functions of bounded mean oscillation for Riemann surfaces, and it is shown that for any analytic function on a Riemann surface the area of its range set bounds the square of its BMO norm, from which it is seen as an immediate corollary that the space BMOA includes the space AD of analytic functions with finite Dirichlet integrals.Let R be an open Riemann surface which possesses a Green's function, i.e., R ∉ OG, and f b e an analytic function defined on R. The Dirichletintegral DR(f) = D(f) of f on R is defined by1.1and we denote by AD(R) the space of all functions f analytic on R for which D(f) < +∞.


2018 ◽  
Vol 2018 (745) ◽  
pp. 59-82 ◽  
Author(s):  
Tyson Ritter

Abstract Let X be an open Riemann surface. We prove an Oka property on the approximation and interpolation of continuous maps X \to (\mathbb{C}^{*})^{2} by proper holomorphic embeddings, provided that we permit a smooth deformation of the complex structure on X outside a certain set. This generalises and strengthens a recent result of Alarcón and López. We also give a Forstnerič–Wold theorem for proper holomorphic embeddings (with respect to the given complex structure) of certain open Riemann surfaces into {(\mathbb{C}^{*})^{2}} .


Sign in / Sign up

Export Citation Format

Share Document