A generalization of Reich’s fixed point theorem for multi-valued mappings

Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3295-3305 ◽  
Author(s):  
Antonella Nastasi ◽  
Pasquale Vetro

Motivated by a problem concerning multi-valued mappings posed by Reich [S. Reich, Some fixed point problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 57 (1974) 194-198] and a paper of Jleli and Samet [M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014:38 (2014) 1-8], we consider a new class of multi-valued mappings that satisfy a ?-contractive condition in complete metric spaces and prove some fixed point theorems. These results generalize Reich?s and Mizoguchi-Takahashi?s fixed point theorems. Some examples are given to show the usability of the obtained results.

2018 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Koushik Sarkar ◽  
Manoranjan Singha

N. Souayah [10] introduced the concept of partial Sb-metric spaces. In this paper, we established a fixed point theorem for a new class of contractive mappings and a generalization of Theorem 2 from [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Am. Math. Soc. 136, (2008), 1861-1869] in partial Sb-metric spaces. We provide an example in support of our result.


Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3875-3884 ◽  
Author(s):  
Hamid Baghani ◽  
Maryam Ramezani

In this paper, firstly, we introduce the notion of R-complete metric spaces. This notion let us to consider fixed point theorem in R-complete instead of complete metric spaces. Secondly, as motivated by the recent work of Amini-Harandi (Fixed Point Theory Appl. 2012, 2012:215), we explain a new generalized contractive condition for set-valued mappings and prove a fixed point theorem in R-complete metric spaces which extends some well-known results in the literature. Finally, some examples are given to support our main theorem and also we find the existence of solution for a first-order ordinary differential equation.


2015 ◽  
Vol 31 (3) ◽  
pp. 403-410
Author(s):  
FRANCESCA VETRO ◽  

Jleli and Samet gave a new generalization of the Banach contraction principle in the setting of Branciari metric spaces [Jleli, M. and Samet, B., A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014:38 (2014)]. The purpose of this paper is to study the existence of fixed points for multivalued mappings, under a similar contractive condition, in the setting of complete metric spaces. Some examples are provided to illustrate the new theory.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Abdelkarim Kari ◽  
Mohamed Rossafi ◽  
El Miloudi Marhrani ◽  
Mohamed Aamri

The Banach contraction principle is the most celebrated fixed point theorem and has been generalized in various directions. In this paper, inspired by the concept of θ ‐ ϕ -contraction in metric spaces, introduced by Zheng et al., we present the notion of θ ‐ ϕ -contraction in b -rectangular metric spaces and study the existence and uniqueness of a fixed point for the mappings in this space. Our results improve many existing results.


2005 ◽  
Vol 2005 (5) ◽  
pp. 789-801
Author(s):  
Bijendra Singh ◽  
Shishir Jain ◽  
Shobha Jain

Rhoades (1996) proved a fixed point theorem in a boundedD-metric space for a contractive self-map with applications. Here we establish a more general fixed point theorem in an unboundedD-metric space, for two self-maps satisfying a general contractive condition with a restricted domain ofxandy. This has been done by using the notion of semicompatible maps inD-metric space. These results generalize and improve the results of Rhoades (1996), Dhage et al. (2000), and Veerapandi and Rao (1996). These results also underline the necessity and importance of semicompatibility in fixed point theory ofD-metric spaces. All the results of this paper are new.


1998 ◽  
Vol 21 (3) ◽  
pp. 559-563
Author(s):  
R. K. Namdeo ◽  
N. K. Tiwari ◽  
B. Fisher ◽  
Kenan Taş

A new related fixed point theorem on two complete metric spaces is obtained. A generalization is given for two compact metric spaces.


2014 ◽  
Vol 23 (1) ◽  
pp. 99-106
Author(s):  
ANCA M. OPREA ◽  

The purpose of this paper is to present some fixed point theorems for multivalued contractions of rational type. We extend the results of I. Cabrera, J. Harjani and K. Sadarangan, A fixed point theorem for contractions of rational type in partially ordered metric spaces, Annali dellUniversita di Ferrara, DOI 10.1007/s11565-013-0176-x, to the case of multivalued operators.


Author(s):  
M. Eshaghi Gordji ◽  
S. Mohseni Kolagar ◽  
Y.J. Cho ◽  
H. Baghani

Abstract In this paper, we introduce the concept of a generalized weak contraction for set-valued mappings defined on quasi-metric spaces. We show the existence of fixed points for generalized weakly contractive set-valued mappings. Indeed, we have a generalization of Nadler’s fixed point theorem and Banach’s fixed point theorem in quasi-metric spaces and, further, investigate the convergence of iterate scheme of the form xn+1 ∈ Fxn with error estimates.


2015 ◽  
Vol 16 (2) ◽  
pp. 225 ◽  
Author(s):  
Valeriu Popa ◽  
Alina-Mihaela Patriciu

<p>In this paper, two general fixed point theorem for a sequence of mappings satisfying implicit relations in Gp - complete metric spaces are proved.</p>


Filomat ◽  
2013 ◽  
Vol 27 (7) ◽  
pp. 1259-1268 ◽  
Author(s):  
Margherita Sgroi ◽  
Calogero Vetro

Wardowski [Fixed Point Theory Appl., 2012:94] introduced a new concept of contraction and proved a fixed point theorem which generalizes Banach contraction principle. Following this direction of research, we will present some fixed point results for closed multi-valued F-contractions or multi-valued mappings which satisfy an F-contractive condition of Hardy-Rogers-type, in the setting of complete metric spaces or complete ordered metric spaces. An example and two applications, for the solution of certain functional and integral equations, are given to illustrate the usability of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document