scholarly journals Analysis of entropy generation minimization (EGM) in flow of Ree-Eyring nanofluid between two coaxially rotating disks

2020 ◽  
pp. 57-57
Author(s):  
Muhammad Khan ◽  
Riaz Muhammad ◽  
Sumaira Qayyum ◽  
Niaz Khan ◽  
M. Jameel

The present communication addresses MHD radiative nanomaterial flow of Ree-Eying fluid between two coaxially rotating disks. Both disks are stretchable. Buongiorno model is used for nanofluids. Nanofluid aspects comprise random motion of particles (Brownian diffusion) and thermophoresis. MHD fluid is considered. Furthermore, dissipation, radiative heat flux and Ohmic heating effects are considered to model the energy equation. Total entropy rate is calculated through implementation of second thermodynamics law. Series solutions are developed through homotopy analysis method. Impacts of physical parameters on the velocity, temperature, entropy and concentration fields are discussed graphically. Skin friction coefficient and heat and mass transfer rates are numerically calculated through Tables 2-4. It is noticed that the velocity of liquid particles decreases versus higher estimations of magnetic parameter while it enhances via larger rotational parameter. Temperature field significantly increases in the presence of both Brownian diffusion and thermophoresis parameters.

2009 ◽  
Vol 13 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Pushkar Sharma ◽  
Gurminder Singh

Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on steady flow of a viscous incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream near a stagnation point on a stretching non-conducting isothermal sheet. The governing equations of continuity, momentum, and energy are transformed into ordinary differential equations and solved numerically using Runge-Kutta fourth order with shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically, and their numerical values for various values of physical parameters are compared with earlier results and presented through tables.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
M. Farooq ◽  
S. Ahmad ◽  
M. Javed ◽  
Aisha Anjum

In this attempt, melting heat transfer characteristic of unsteady squeezed nanofluid flows in non-Darcy porous medium is interrogated. The nanofluid model incorporates Brownian diffusion and thermophoresis to characterize the heat and mass transport in the presence of thermal and solutal stratification. Similarity solutions are implemented to acquire nonlinear system of ordinary differential equations which are then evaluated using Homotopic technique. Flow behavior of involved physical parameters is examined and explanations are stated through graphs. We determine and analyze skin friction coefficient, Nusselt and Sherwood numbers through graphs. It is evident that larger melting parameter results in decrement in temperature field, while horizontal velocity enhances for higher melting parameter. Moreover, temperature and concentration fields are dominant for higher Brownian diffusion parameter.


2020 ◽  
Vol 19 (03) ◽  
pp. 2040006 ◽  
Author(s):  
M. Ijaz Khan ◽  
Faris Alzahrani

This paper deals with the entropy optimization and heat transport of magneto-nanomaterial flow of non-Newtonian (Jeffrey fluid) towards a curved stretched surface. MHD fluid is accounted. The modeling of energy expression is developed subject to Brownian diffusion, Joule (Ohmic) heating, thermophoresis and viscous dissipation. Total entropy rate is discussed with the help of fluid friction irreversibility, mass transfer irreversibility, Joule heating irreversibility and heat transfer irreversibility. Binary chemical reaction with the smallest amount of activation energy is further considered. The governing equations of Jeffrey fluid with effects of hydrodynamic, thermal radiation, heat and mass transfer were solved through built-in-shooting method. The flow variables on the entropy rate, velocity field, concentration, Bejan number, skin friction coefficient and temperature are physically discussed through various graphs. The outcomes reveal that the entropy rate increases with an enhancement in curvature parameter. Such obtained outcomes help in mechanical and industrial engineering sciences. Moreover, the velocity and temperature decays versus ratio of relaxation to retardation times are also noticed.


2010 ◽  
Vol 88 (12) ◽  
pp. 911-917 ◽  
Author(s):  
T. Hayat ◽  
M. Nawaz ◽  
S. Asghar ◽  
Awatif A. Hendi

This study explores the flow of a second-grade fluid in divergent–convergent channel. The problem formulation is first developed, and then the corresponding nonlinear problem is solved by homotopy analysis method (HAM). The effects of different physical parameters on the velocity profile are shown. The numerical values of the skin friction coefficient for different values of parameters are tabulated.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Azad Hussain ◽  
Aysha Rehman ◽  
Naqash Ahmed ◽  
A. S. El-Shafay ◽  
Sahar A. Najati ◽  
...  

The present article investigates heat transfer and pseudoplastic nanomaterial liquid flow over a vertical thin cylinder. The Buongiorno model is used for this analysis. The problem gains more significance when temperature-dependent variable viscosity is taken into account. Using suitable similarity variables, nonlinear flow equations are first converted into ordinary differential equations. The generating structure is solved by the MATLAB BVP4C algorithm. Newly developed physical parameters are focused. It is observed that the heat transfer rate and the skin friction coefficient is increased remarkably because of mixing nano-particles in the base fluid by considering γb=1, 2, 3, 4 and λ=1, 1.5, 2, 2.5,3. It is found that the temperature field increases by inclining the values of thermophoresis and Brownian motion parameters. It is also evaluated that the velocity field decreases by increasing the values of the curvature parameter, Weissenberg number and buoyancy ratio characteristics.


Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 18 ◽  
Author(s):  
Ghulam Rasool ◽  
Ting Zhang ◽  
Ali J. Chamkha ◽  
Anum Shafiq ◽  
Iskander Tlili ◽  
...  

The current article aims to present a numerical analysis of MHD Williamson nanofluid flow maintained to flow through porous medium bounded by a non-linearly stretching flat surface. The second law of thermodynamics was applied to analyze the fluid flow, heat and mass transport as well as the aspects of entropy generation using Buongiorno model. Thermophoresis and Brownian diffusion is considered which appears due to the concentration and random motion of nanoparticles in base fluid, respectively. Uniform magnetic effect is induced but the assumption of tiny magnetic Reynolds number results in zero magnetic induction. The governing equations (PDEs) are transformed into ordinary differential equations (ODEs) using appropriately adjusted transformations. The numerical method is used for solving the so-formulated highly nonlinear problem. The graphical presentation of results highlights that the heat flux receives enhancement for augmented Brownian diffusion. The Bejan number is found to be increasing with a larger Weissenberg number. The tabulated results for skin-friction, Nusselt number and Sherwood number are given. A decent agreement is noted in the results when compared with previously published literature on Williamson nanofluids.


2018 ◽  
Vol 16 ◽  
pp. 177-190 ◽  
Author(s):  
S.U. Mamatha ◽  
Chakravarthula S.K. Raju ◽  
Mahesha ◽  
Oluwole Daniel Makinde

The present study deals with steady incompressible magneto hydrodynamic hyperbolic tangent fluid flow induced by a convectively heated stretching surface with the suspension of dust particles, Darcy-Forchheimer, thermal radiation, viscous dissipation and Ohmic heating. Similarity transformations were used to convert partial differential equations (PDEs) to a system of nonlinear ordinary differential equations (NODEs) which are solved numerically by Runge-Kutta Fehlberg method. The effect of pertinent parameters on velocity and temperature profiles of both fluid and dust phase within the boundary layer has been studied by considering various values of controlling parameters. Additionally, the skin friction coefficient and reduced heat transfer coefficient have been examined for various values of the governing parameters. It is found that Hartmann number and Forchheimer parameter reduce friction factor and heat transfer rates.


2021 ◽  
pp. 159-159
Author(s):  
Sharafat Ali ◽  
Muhammad Raja ◽  
Tahir Cheema ◽  
Iftikhar Ahmad ◽  
Numan Mian ◽  
...  

A novel numerical computing framework through Lobatto IIIA method is presented for the dynamical investigation of nanofluidic problem with Williamson fluid flow on a stretching sheet by considering the thermal slip and velocity. The impact of thermophoresis and brownian motion on phenomena of heat transfer are explored by using Buongiorno model. The governing nonlinear partial differential system representing the mathematical model of the Williamson fluid is transformed in to a system of ODEs by incorporating the competency of non-dimensional similarity variables. The dynamics of the transformed system of ODEs are evaluated through the Lobatto IIIA numerically. Sufficient graphical and numerical illustrations are portrayed in order to investigate and analyze the influence of physical parameters; Williamson parameter, Prandtl number, Lewis number, Schmidt number, ratio of diffusivity parameter and ratio of heat capacitance parameter on velocity, temperature and concentration fields. The numerically computed values of local Nusselt number, local Sherwood number and Skin friction coefficient are also inspected for exhaustive assessment. Moreover, the accuracy, efficiency and stability of the proposed method is analyzed through relative errors.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Aneela Bibi ◽  
Hang Xu

A mathematical model is developed to examine the behaviors of a peristalsis flow with nanoparticles in a symmetric channel under the magnetic environment. Here, the nanofluid is electrically conducted through an external magnetic field. Thermal radiation and Joule heating effects are also retained in the present analysis. Under the lubrication approach, the reduced nonlinear systems are obtained. Then, they are solved very efficiently by means of a homotopy analysis method-based package BVPh 2.0. The influences of important physical parameters on the flow behaviors are presented. Analysis of the entropy generation is illustrated. It is found that the Brownian diffusion and the thermophoresis are the two most important nanoparticle slip mechanisms in the Jeffery fluids as well. Besides, the Hartman number, the type of the Jeffery fluid, the Brinkman number, and the thermal radiation parameter play important roles on flow behaviors. Results show that the temperature profile enhanced but the nanoparticles’ volume fraction profiles lowered with increase in the Hartman number. However, using the Jeffery nanofluid induces effect on the velocity distribution that decreases with the increase in the Jeffery fluid parameter. It is also found that the generated total entropy increases with an increase in the Brownian motion parameter but with a decrease in the thermophoresis parameter.


Open Physics ◽  
2013 ◽  
Vol 11 (5) ◽  
Author(s):  
Yina Sun ◽  
Xinhui Si ◽  
Liancun Zheng ◽  
Yanan Shen ◽  
Xinxin Zhang

AbstractThe present work investigates the unsteady, imcompressible flow of a micropolar fluid between two orthogonally moving porous coaxial disks. The lower and upper disks are rotating with the same angular speed in counter directions. The flows are driven by the contraction and the rotation of the disks. An extension of the Von Kármán type similarity transformation is proposed and is applied to reduce the governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. These differential equations with appropriate boundary conditions are responsible for the flow behavior between large but finite coaxial rotating disks. The analytical solutions are obtained by employing the homotopy analysis method. The effects of some various physical parameters like the expansion ratio, the rotational Reynolds number, the permeability Reynolds number, and micropolar parameters on the velocity fields are observed in graphs and discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document