scholarly journals Crystallographic Orientation and Microstructure Dependences of Surface Potential for Annealed S45C Steel Using Combined Scanning Kelvin Force Probe Microscopy and Electron Backscatter Diffraction Analyses

Author(s):  
Yoshiharu Murase ◽  
Hiroyuki Masuda ◽  
Hideki Katayama
2018 ◽  
Vol 64 (247) ◽  
pp. 771-780 ◽  
Author(s):  
PAT WONGPAN ◽  
DAVID J. PRIOR ◽  
PATRICIA J. LANGHORNE ◽  
KATHERINE LILLY ◽  
INGA J. SMITH

ABSTRACTWe have mapped the full crystallographic orientation of sea ice using electron backscatter diffraction (EBSD). This is the first time EBSD has been used to study sea ice. Platelet ice is a feature of sea ice near ice shelves. Ice crystals accumulate as an unconsolidated sub-ice platelet layer beneath the columnar ice (CI), where they are subsumed by the advancing sea–ice interface to form incorporated platelet ice (PI). As is well known, in CI the crystal preferred orientation comprises dominantly horizontal c-axes, while PI has c-axes varying between horizontal and vertical. For the first time, this study shows the a-axes of CI and PI are not random. Misorientation analysis has been used to illuminate the possible drivers of these alignments. In CI the misorientation angle distribution from random pairs and neighbour pairs of grains are indistinguishable, indicating the distributions are a consequence of crystal preferred orientation. Geometric selection during growth will develop the a-axis alignment in CI if ice growth in water is fastest parallel to the a-axis, as has previously been hypothesised. In contrast, in PI random-pair and neighbour-pair misorientation distributions are significantly different, suggesting mechanical rotation of crystals at grain boundaries as the most likely explanation.


2013 ◽  
Vol 46 (1) ◽  
pp. 216-223
Author(s):  
Shan-Rong Zhao ◽  
Hai-Jun Xu ◽  
Rong Liu ◽  
Qin-Yan Wang ◽  
Xian-Yu Liu

Snowflake-shaped dendrites of β-eucryptite–β-quartz solid solution were artificially crystallized in a matt glaze, and the crystallographic orientation of the dendrites was analysed by the electron backscatter diffraction (EBSD) technique. The six branches of a snowflake-shaped dendrite in the plane (0001) are along 〈110〉. From the orientation determination, a twin relationship and a topotactic relationship between dendrites were found. The twin axes are [011], [0{\overline 1}1] and [210], and the twin planes perpendicular to the twin axes are ({\overline 1}2{\overline 1}2) and (1{\overline 2}12). From the reticular theory of twinning, it was calculated that the twin indexn= 2 and the obliquity ω = 3.2877°. The studied dendrite is a twin by reticular pseudomerohedry with low twin index and obliquity. In the topotactic growth, no twin elements have been found, but the three main crystallographic directions 〈001〉, 〈210〉 and 〈110〉 of the two dendritic crystals overlap each other. The degree of lattice coincidence between the two crystals in this topotactic growth is also discussed.


2020 ◽  
Vol 235 (4-5) ◽  
pp. 105-116
Author(s):  
Chang Xu ◽  
Shanrong Zhao ◽  
Jiaohua Zhou ◽  
Xu He ◽  
Haijun Xu

AbstractOrientated ilmenite inclusions have been discovered in amphibole of hornblendite from the Zhujiapu area, Dabie ultra-high-pressure (UHP) metamorphic terrane, China. In order to characterize the crystallographic orientation relationships between ilmenite inclusions and amphibole host and reconstruct the mechanism of their formation, we present an electron backscatter diffraction (EBSD) analysis combined with energy dispersive spectroscopy (EDS) analysis and electron microprobe analysis (EPMA) for ilmenite inclusions and amphibole host. The inclusions can be subdivided into four groups: (1) 60.2% of ilmenites have the crystallographic orientation {0001}Ilm // {100}Amp, (101̅0)Ilm // {010}Amp, [112̅0]Ilm // <001> Amp and [112̅0]Ilm // <012 > Amp. (2) 16.5% of ilmenites have <0001> Ilm // <001> Amp, (101̅0)Ilm // {010}Amp, (112̅0)Ilm // {100}Amp and [3̅031]Ilm // <012> Amp. (3) 13.8% of ilmenites have <0001> Ilm // <012> Amp, (112̅0)Ilm // {100}Amp and [3̅031]Ilm // <001> Amp. (4) 9.5% of ilmenites have <0001> Ilm // [1̅12]Amp, (101̅0)Ilm // {201}Amp, [112̅0]Ilm // [1̅12]Amp and ${[11\overline {21} ]_{Ilm}}$// <010> Amp. By comparing the lattice relationship between ilmenite inclusions and amphibole hosts, it is shown that the frequency of the ilmenite inclusions in different groups is related to the lattice coherency and oxygen packing. Group-1 of the ilmenite inclusions was most likely be formed via a solid-state exsolution process by cooling of the hornblendite after the intrusion was emplaced. The other three groups of ilmenite inclusions were probably formed via reduction reaction in an open system. The formation temperature of the ilmenite inclusions is estimated by using the TiO2 solubility geothermeter in amphibole. The minimum formation temperature of the ilmenite inclusions is about 1025 °C, and the maximum formation temperature of the ilmenite inclusions is about 1126 °C.


Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 113
Author(s):  
Behnam Shakerifard ◽  
Jesus Galan Lopez ◽  
Leo A. I. Kestens

The third generation of advanced high strength steels shows promising properties for automotive applications. The macroscopic mechanical response of this generation can be further improved by a better understanding of failure mechanisms on the microstructural level and micro-mechanical behavior under various loading conditions. In the current study, the microstructure of a multiphase low silicon bainitic steel is characterized with a scanning electron microscope (SEM) equipped with an electron backscatter diffraction detector. A uniaxial tensile test is carried out on the bainitic steel with martensite and carbides as second phase constituents. An extensive image processing on SEM micrographs is conducted in order to quantify the void evolution during plastic deformation. Later, a new post-mortem electron backscatter diffraction-based method is introduced to address the correlation between crystallographic orientation and damage initiation. In this multiphase steel, particular crystallographic orientation components were observed to be highly susceptible to micro-void formation. It is shown that stress concentration around voids is rather relaxed by void growth than local plasticity. Therefore, this post-mortem method can be used as a validation tool together with a crystal plasticity-based hardening model in order to predict the susceptible crystallographic orientations to damage nucleation.


1997 ◽  
Vol 3 (S2) ◽  
pp. 561-562
Author(s):  
S.I. Wright ◽  
D.P. Field

Image analysis techniques coupled with crystallography computer codes have been used to index electron backscatter diffraction patterns (EBSPs). The ability to automatically obtain the crystallographic orientation from EBSPs coupled with computer control of the electron beam (or stage) in a scanning electron microscope (SEM) provides a much more complete description of the spatial distribution of crystallographic orientation in polycrystalline materials than has been previously attainable using conventional metallography techniques. Orientation data obtained using this technique can be used to form images reflecting the spatial arrangement of crystallographic orientation in a microstructure. Such images enable the topological features of a microstructure to be linked with the orientation characteristics. The formation of these images, as well as the data collection technique, is sometimes termed Orientation Imaging Microscopy (OIM). The utility of this technique for exploring the property/structure relationship in polycrystalline material has been demonstrated by numerous researchers. However, as yet, this technique has almost exclusively been applied to single phase materials.


2006 ◽  
Vol 42 (10) ◽  
pp. 2873-2875 ◽  
Author(s):  
A. Koblischka-Veneva ◽  
M.R. Koblischka ◽  
F. Mucklich ◽  
S. Murphy ◽  
Y. Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document