Development of Printable Graphene Electrochemical Biosensor for Environmental Monitoring and Medical Applications

2021 ◽  
Author(s):  
◽  
Lue Wang

Algal bloom is a type of harmful water pollution, which is mainly caused by the cyanobacteria or dinoflagellate that releases a variety of algal toxins into a water source. Among them, microcystins are often detected, of which microcystin-leucine-arginine (MC-LR) is known as one of the most toxic variants that has received a great amount of attention due to its serious consequences after ingestion such as irreversible organ damage or even death. Human cytomegalovirus (HCMV) is a type of herpes virus that can widely spread via mucous contact, resulting in many severe symptoms or even death especially for infants, pregnant women and immunocompromised patients if there is no timely diagnosis. Following these reasons, there is an urgent need to develop a commercially viable and sensitive monitoring system to reach a rapid identification on water quality or human health. This work mainly focuses on the development of vertically aligned graphene (VAG) electrodes through the novel use of flexographic printing and photonic annealing techniques for highly sensitive detection of biological targets using non-Faradaic electrochemical impedance spectroscopy (EIS). For the detection of MC-LR, the biosensor achieved an low limit of detection (LOD) of 1.2 ng/L via baseline method. In the baseline method, measurement was first performed using PBS. After that, measurement was then performed on antigen solution drop-casted on the biosensor. The biosensing response between PBS and antigen acquired at a specific frequency was dependent on the target concentration. The biosensor also exhibited excellent selectivity with high percentage of recovery (i.e., 91.8 %) and stability (i.e., 108.8 % and 99.4 % after one and three weeks, respectively). Moreover, similar good performance (i.e., 98.4%) was observed in tap water spiked with the antigen. As for the detection of CMV pp65-antigen, biosensing results showed a good linearity when tested on the control group (i.e., 0 ng/mL) up to 38,500 ng/mL of the antigen concentration using the same baseline measurement. The VAG biosensor showed a dynamic range of between 3.85 and 38,500 ng/mL for the detection of HCMV pp65-antigen, which matches with the clinically relevant range of 102 ~ 106 genomes/mL based on measurement performed on viral loaded urine samples using PCR technique. Measurements on the target concentration using the biosensor were also performed using a non-baseline method. In this method, only the antigen solution was used throughout the measurement, where the biosensing result was determined by the difference in the response recorded at the start of measurement and after a certain incubation duration at a specific frequency. In particular, the change in phase showed a strong correlation against the target concentration. The biosensing response for the control group (i.e., 0.38°±0.191°) up to 38,500 ng/mL (i.e., 2.26°±0.543°) antigen concentration was highly comparable to those (i.e., 0.16°±0.0854° for the control group and 2.21°±0.105° for 38,500 ng/mL) derived from the baseline method, implying the strong feasibility of the non-baseline testing.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Pawan Jolly ◽  
Marina R. Batistuti ◽  
Anna Miodek ◽  
Pavel Zhurauski ◽  
Marcelo Mulato ◽  
...  

Abstract MicroRNAs (miRNAs) play crucial regulatory roles in various human diseases including cancer, making them promising biomarkers. However, given the low levels of miRNAs present in blood, their use as cancer biomarkers requires the development of simple and effective analytical methods. Herein, we report the development of a highly sensitive dual mode electrochemical platform for the detection of microRNAs. The platform was developed using peptide nucleic acids as probes on gold electrode surfaces to capture target miRNAs. A simple amplification strategy using gold nanoparticles has been employed exploiting the inherent charges of the nucleic acids. Electrochemical impedance spectroscopy was used to monitor the changes in capacitance upon any binding event, without the need for any redox markers. By using thiolated ferrocene, a complementary detection mode on the same sensor was developed where the increasing peaks of ferrocene were recorded using square wave voltammetry with increasing miRNA concentration. This dual-mode approach allows detection of miRNA with a limit of detection of 0.37 fM and a wide dynamic range from 1 fM to 100 nM along with clear distinction from mismatched target miRNA sequences. The electrochemical platform developed can be easily expanded to other miRNA/DNA detection along with the development of microarray platforms.


Biosensors ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 175
Author(s):  
Wioleta Białobrzeska ◽  
Daniel Firganek ◽  
Maciej Czerkies ◽  
Tomasz Lipniacki ◽  
Marta Skwarecka ◽  
...  

This paper presents the development and comparison of label-free electrochemical immunosensors based on screen-printed gold and glassy carbon (GC) disc electrodes for efficient and rapid detection of respiratory syncytial virus (RSV). Briefly, the antibody specific to the F protein of RSV was successfully immobilized on modified electrodes. Antibody coupling on the Au surface was conducted via 4-aminothiophenol (4-ATP) and glutaraldehyde (GA). The GC surface was modified with poly-L-lysine (PLL) for direct anti-RSV conjugation after EDC/NHS (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-Hydroxysuccinimide) activation. Electrochemical characterizations of the immunosensors were carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). GC-based immunosensors show a dynamic range of antigen detection from 1.0 × 105 PFU/mL to 1.5×107 PFU/mL, more than 1.0 × 105 PFU/mL to 1.0 × 107 PFU/mL for the Au-based sensor. However, the GC platform is less sensitive and shows a higher detection limit (LOD) for RSV. The limit of detection of the Au immunosensor is 1.1 × 103 PFU/mL, three orders of magnitude lower than 2.85 × 106 PFU/mL for GC. Thus, the Au-based immunosensor has better analytical performance for virus detection than a carbon-based platform due to high sensitivity and very low RSV detection, obtained with good reproducibility.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S12-S12
Author(s):  
Badrinath Jagannath ◽  
Sriram Muthukumar ◽  
Shalini Prasad

Abstract Introduction Inflammatory Bowel Disease affects 1.2 million in the United States. Flare-up of the disease occurs in a random way and current testing methods lack ability for real-time prediction of a flare up. The levels of cytokines elevate during a flareup. Therefore, we hypothesize that real-time monitoring of cytokine biomarkers can be useful for early detection of flare-ups and provide better patient management. In this context, sweat-based diagnostics can be promising for real-time tracking of IBD biomarkers. Materials and Methods A wearable SWEATSENSER was developed by functionalization of specific affinity capture probes (IL-1β, CRP antibodies) on metal/semiconducting interface deposited on a porous patch substrate. Electrochemical impedance spectroscopy technique was used to detect the interaction between the specific antibody and target analyte. The developed SWEATSENSER was tested on 20 healthy human subjects in compliance with an approved IRB at UT Dallas. Continuous on-body measurements were recorded to report IL-1β, CRP levels in sweat in real-time. Results In this work, a wearable multiplexed sweat sensor for detection of IL-1β, CRP in sweat has been demonstrated. The sensor demonstrates a limit of detection of 1 pg/mL with a dynamic range from 1 pg/mL- 512 pg/mL for both the biomarkers in sweat. The sweat sensor demonstrated excellent correlation with reference ELISA method (Pearson’s r ≥0.95). On-body monitoring using sweat sensor from passively perspired human sweat demonstrated a mean concentration of 28 pg/mL for IL-1β in healthy cohort. Conclusion A wearable sweat sensor was developed to monitor potential IBD markers in sweat. The developed device can be useful in better management of IBD patients.


Author(s):  
Anjan Panneer Selvam ◽  
Shalini Prasad

A nanochannel-based electrochemical biosensor has been demonstrated for rapid and multiplexed detection of a panel of three biomarkers associated with rapid detection of sepsis. The label-free biosensor detected procalcitonin (PCT), lipoteichoic acid (LTA), and lipopolysaccharide (LPS) from human whole blood. The biosensor comprises a nanoporous nylon membrane integrated onto a microelectrode sensor platform for nanoconfinement effects. Charge perturbations due to biomarker binding are recorded as impedance changes using electrochemical impedance spectroscopy. The measured impedance change is used to quantitatively determine the concentration of the three biomarkers using antibody receptors from the tested sample. We were successful in detecting and quantifying the three biomarkers from whole blood. The limit of detection was 0.1 ng/mL for PCT and 1 µg/mL for LPS and LTA. The sensor was able to demonstrate a dynamic range of detection from 01.1 ng/mL to 10 µg/mL for PCT and from 1 µg/mL to 1000 µg/mL for LPS and LTA biomarkers. This novel technology has promising preliminary results toward the design of sensors for rapid and sensitive detection of the three panel biomarkers in whole blood toward diagnosis and classification of sepsis.


2020 ◽  
Vol 20 (10) ◽  
pp. 6057-6062
Author(s):  
Rahul Saxena ◽  
H. Fouad ◽  
Sudha Srivastava

We report a nanoparticles based electrochemical immunosensor to detect and quantify triiodothyronine (T3) hormone. Immunosensor developed using gold nanoparticles and anti-T3 antibody, was employed for quantification of T3 antigen using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) technique. The electrochemical response of the developed immunosensor correlates well with the amount of antigen present in the sample. With increase in antigen concentration the immunocomplex formation on electrode surface increases and hence redox current decreases. The immunosensor shows a lower limit of detection of 1 pg/mL and dynamic range from 1 to 500 pg/mL. Sensitivity of the immunosensor was found to be 29.81 μA/pg/mL/cm2.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S18-S18
Author(s):  
Badrinath Jagannath ◽  
Sriram Muthukumar ◽  
Shalini Prasad

Abstract Introduction Sweat based wearable sensors have shown a lot of promise in the recent years due to the ability of tracking the biomarkers in real-time. Among the various biomarkers present in sweat, cytokine concentrations have been shown in comparable range to the blood cytokines. Detection of sweat cytokines can help in monitoring of inflammation in real-time. In this work, we demonstrate a duplex cytokine sweat based sensor for real-time monitoring. The developed sensor can detect interleukin-6 (IL-6) and interleukin-10 (IL-10) in real-time that can aid in prognosis or recovery of inflammation. Materials and Methods The sweat based sensor was developed with semiconducting electrode on porous polymeric substrate on a porous polymer substrate. Affinity capture probes were immobilized on the sensor surface via a thiol-cross linking chemistry. ATR-IR was used to validate immobilization of the capture probes. Electrochemical impedance measurements technique was used to detect the interaction between the specific antibody and target analyte. The impedance response based on the binding interaction was used to quantify the sensor metrics. Results In this work, a sweat sensor platform for the duplex detection of IL-6 and IL-10 has been demonstrated. The conjugation of the antibodies to the sensor surface was confirmed using ATR-IR spectroscopy. Impedance response was used to characterize the sensor performance metrics. Calibration dose response curve was developed with decreasing impedance response for increasing concentrations of target analyte. A limit of detection of 2 pg/mL was obtained with a dynamic range from 2 pg/mL- 200 pg/mL for IL-6. IL-10 demonstrated a limit of detection of 1.5pg/mL with a dynamic range from 1.5- 150pg/mL. The developed sensor demonstrated minimal or no cross-reactivity to non-specific molecules. Conclusion A novel sweat-based biosensor for duplex detection of cytokine markers has been demonstrated. The developed biosensor can detect pro and anti-inflammatory cytokines that can aid in the prognosis or recovery of inflammation.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1975
Author(s):  
Isabel Seguro ◽  
João G. Pacheco ◽  
Cristina Delerue-Matos

In this work, a disposable electrochemical (voltammetric) molecularly imprinted polymer (MIP) sensor for the selective determination of diclofenac (DCF) was constructed. The proposed MIP-sensor permits fast (30 min) analysis, is cheap, easy to prepare and has the potential to be integrated with portable devices. Due to its simplicity and efficiency, surface imprinting by electropolymerization was used to prepare a MIP on a screen-printed carbon electrode (SPCE). MIP preparation was achieved by cyclic voltammetry (CV), using dopamine (DA) as a monomer in the presence of DCF. The differential pulse voltammetry (DPV) detection of DCF at MIP/SPCE and non-imprinted control sensors (NIP) showed an imprinting factor of 2.5. Several experimental preparation parameters were studied and optimized. CV and electrochemical impedance spectroscopy (EIS) experiments were performed to evaluate the electrode surface modifications. The MIP sensor showed adequate selectivity (in comparison with other drug molecules), intra-day repeatability of 7.5%, inter-day repeatability of 11.5%, a linear range between 0.1 and 10 μM (r2 = 0.9963) and a limit of detection (LOD) and quantification (LOQ) of 70 and 200 nM, respectively. Its applicability was successfully demonstrated by the determination of DCF in spiked water samples (river and tap water).


Biosensors ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 38
Author(s):  
Myungsang Park ◽  
Yesol Song ◽  
Ki Jun Kim ◽  
Seung Jun Oh ◽  
Jun Ki Ahn ◽  
...  

The immunoglobulin E (IgE) level in serum is an important factor in the examination of allergy. Ferrocene (Fc)-modified self-assembled monolayers (SAMs) were placed on an indium tin oxide (ITO) electrode as a sensing layer for the detection of human IgE. The Fc moiety in the SAMs facilitated the electron transfer through the organic SAMs layer and electrocatalytic signal amplification. The electrochemical measurement was accomplished after the sandwich type immobilization of the receptor antibody, target human IgE, and enzyme conjugated secondary antibody. The enzyme product, p-aminophenol, was quantitatively analyzed by redox cycling via Fc. In addition, the electrochemical impedance spectroscopy (EIS) was investigated for the detection of IgE. The limit of detection (LOD), limit of quantification (LOQ), and dynamic range of the electrochemical sensor were 3 IU/mL, 10 IU/mL, and from 10 IU/mL to 100 IU/mL, respectively.


2017 ◽  
Vol 22 (3) ◽  
pp. 338-347 ◽  
Author(s):  
Anjan Panneer Selvam ◽  
Shalini Prasad

A nanochannel-based electrochemical biosensor has been demonstrated for rapid and multiplexed detection of a panel of three biomarkers associated with rapid detection of sepsis. The label-free biosensor detected procalcitonin (PCT), lipoteichoic acid (LTA), and lipopolysaccharide (LPS) from human whole blood. The biosensor comprises a nanoporous nylon membrane integrated onto a microelectrode sensor platform for nanoconfinement effects. Charge perturbations due to biomarker binding are recorded as impedance changes using electrochemical impedance spectroscopy. The measured impedance change is used to quantitatively determine the concentration of the three biomarkers using antibody receptors from the tested sample. We were successful in detecting and quantifying the three biomarkers from whole blood. The limit of detection was 0.1 ng/mL for PCT and 1 µg/mL for LPS and LTA. The sensor was able to demonstrate a dynamic range of detection from 01.1 ng/mL to 10 µg/mL for PCT and from 1 µg/mL to 1000 µg/mL for LPS and LTA biomarkers. This novel technology has promising preliminary results toward the design of sensors for rapid and sensitive detection of the three panel biomarkers in whole blood toward diagnosis and classification of sepsis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pattan-Siddappa Ganesh ◽  
Ganesh Shimoga ◽  
Seok-Han Lee ◽  
Sang-Youn Kim ◽  
Eno E. Ebenso

Abstract Background A simple and simultaneous electrochemical sensing platform was fabricated by electropolymerization of allura red on glassy carbon electrode (GCE) for the interference-free detection of dihydroxy benzene isomers. Methods The modified working electrode was characterized by electrochemical and field emission scanning electron microscopy methods. The modified electrode showed excellent electrocatalytic activity for the electrooxidation of catechol (CC) and hydroquinone (HQ) at physiological pH of 7.4 by cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques. Results The effective split in the overlapped oxidation signal of CC and HQ was achieved in a binary mixture with peak to peak separation of 0.102 V and 0.103 V by CV and DPV techniques. The electrode kinetics was found to be adsorption-controlled. The oxidation potential directly depends on the pH of the buffer solution, and it witnessed the transfer of equal number of protons and electrons in the redox phenomenon. Conclusions The limit of detection (LOD) for CC and HQ was calculated to be 0.126 μM and 0.132 μM in the linear range of 0 to 80.0 μM and 0 to 110.0 μM, respectively, by ultra-sensitive DPV technique. The practical applicability of the proposed sensor was evaluated for tap water sample analysis, and good recovery rates were observed. Graphical abstract Electrocatalytic interaction of ALR/GCE with dihydroxy benzene isomers.


Sign in / Sign up

Export Citation Format

Share Document