Output Controller for Parametrically Uncertain Plants with Finite-Time Simultaneous Disturbance Rejection *

Author(s):  
Dmitrii Dobriborsci ◽  
Sergey Kolyubin ◽  
Alexey Bobtsov
2020 ◽  
Vol 53 (2) ◽  
pp. 8456-8461
Author(s):  
Dmitrii Dobriborsci ◽  
Sergey Kolyubin ◽  
Natalia Gorokhova ◽  
Marina Korotina ◽  
Alexey Bobtsov

Robotica ◽  
2020 ◽  
pp. 1-26
Author(s):  
Tao Xue ◽  
ZiWei Wang ◽  
Tao Zhang ◽  
Ou Bai ◽  
Meng Zhang ◽  
...  

SUMMARY Accurate torque control is a critical issue in the compliant human–robot interaction scenario, which is, however, challenging due to the ever-changing human intentions, input delay, and various disturbances. Even worse, the performances of existing control strategies are limited on account of the compromise between precision and stability. To this end, this paper presents a novel high-performance torque control scheme without compromise. In this scheme, a new nonlinear disturbance observer incorporated with equivalent control concept is proposed, where the faster convergence and stronger anti-noise capability can be obtained simultaneously. Meanwhile, a continuous fractional power control law is designed with an iteration method to address the matched/unmatched disturbance rejection and global finite-time convergence. Moreover, the finite-time stability proof and prescribed control performance are guaranteed using constructed Lyapunov function with adding power integrator technique. Both the simulation and experiments demonstrate enhanced control accuracy, faster convergence rate, perfect disturbance rejection capability, and stronger robustness of the proposed control scheme. Furthermore, the evaluated assistance effects present improved gait patterns and reduced muscle efforts during walking and upstair activity.


2020 ◽  
pp. 002029402091992
Author(s):  
Zhicheng Yuan ◽  
Benchao Wu ◽  
Jiayi He ◽  
Xingchen Fu ◽  
Hua Chen

In this paper, the control of multiple ships for unknown scalar field source seeking problem with unknown external disturbances is considered. The sliding mode active disturbance rejection observers are designed first to converge to fixed multiple of the unknown external disturbances in finite time, respectively, and a least square method is adopted to estimate the gradient of the unknown scalar field at the position of the leading ship. Second, the surge, sway and angle velocity of the leading ship can converge to the virtual kinematic controllers through the input control of the dynamic controllers using force and torque in finite time. Third, the virtual controllers and dynamic controllers of the following ships are developed to urge the following ships to accomplish the source seeking problem from the perspective of dynamics. Finally, theoretical proofs and simulations are provided to prove the effectiveness of the strategy proposed.


2015 ◽  
Vol 60 (4) ◽  
pp. 1133-1138 ◽  
Author(s):  
Mauro Franceschelli ◽  
Alessandro Pisano ◽  
Alessandro Giua ◽  
Elio Usai

Sign in / Sign up

Export Citation Format

Share Document