Shadowing and Multipath-Fading Statistics at 2.4 GHz and 39 GHz in Vehicle-to-Vehicle Scenarios

Author(s):  
Hui Wang ◽  
Xuefeng Yin ◽  
Jose Rodriguez-Pineiro ◽  
Juyul Lee ◽  
Myung-Don Kim
2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Cen Ling ◽  
Xuefeng Yin ◽  
Yongyu He ◽  
Silvia Ruiz Boqué

A maximum-likelihood-estimation method is proposed for extracting the attitude of a sectoring base station (BS) antenna by using the received signal strengths observed by multiple user equipments (UEs) in this contribution. This method calculates the likelihood function of the antenna attitude derived by taking into account the multiscale fading statistics, that is, path loss, shadowing, and multipath fading. Depending on whether a calibration result of these fading statistics is available or not, the proposed method can be utilized in either calibration-based estimation (CBE) or calibration-free estimation (CFE) approaches. The performance of both methods is evaluated by Monte-Carlo simulations and real experiments. The results obtained demonstrate that the estimation accuracy of both CBE and CFE approaches increases when the percentage of UEs in the line-of-sight (LoS) condition among all available UEs increases and, moreover, the total number of UEs has no significant impact on the estimation accuracy. Furthermore, the CFE exhibits more robust performance than the CBE particularly in the case where the calibration results involve uncertainties.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Derong Du ◽  
Xiaoping Zeng ◽  
Xin Jian ◽  
Lijuan Miao ◽  
Haobo Wang

Connected vehicles have received much attention in recent years due to their significant societal benefit and commercial value. However, a suitable channel model for vehicle-to-vehicle (V2V) communications is difficult to build due to the dynamic communication environment. In this paper, a three-dimensional (3D) geometrical propagation model that includes line-of-sight (LoS), single bounced (SB), and multiple bounced (MB) rays is proposed. Each of multiple scatterers in the model is moving with a random velocity in a random direction. Based on the geometrical propagation model, a generalized 3D reference model for narrowband multiple-input-multiple-output (MIMO) V2V multipath fading channels is developed. The corresponding space-time correlation functions (ST-CFs), time correlation functions (T-CFs), and space correlation functions (S-CFs) are analytically investigated and numerically simulated in terms of various factors. Several notable ST-CFs for V2V and fixed-to-mobile (F2M) communications become the special cases of ST-CFs of the proposed model by adjusting the corresponding channel parameters. Finally, the theoretical results of the space-Doppler power spectral density (SD-PSD) are compared with the available measured data. The close agreements between the theoretical and measured SD-PSD curves confirm the utility and generality of the proposed model.


2014 ◽  
Vol 73 (3) ◽  
pp. 221-239
Author(s):  
P. A. Molchanov ◽  
J. T. Astola ◽  
Karen O. Egiazarian ◽  
A. V. Totskiy ◽  
A. A. Zelensky

2020 ◽  
Vol 8 ◽  
pp. 14-21
Author(s):  
Surya Man Koju ◽  
Nikil Thapa

This paper presents economic and reconfigurable RF based wireless communication at 2.4 GHz between two vehicles. It implements digital VLSI using two Spartan 3E FPGAs, where one vehicle receives the information of another vehicle and shares its own information to another vehicle. The information includes vehicle’s speed, location, heading and its operation, such as braking status and turning status. It implements autonomous vehicle technology. In this work, FPGA is used as central signal processing unit which is interfaced with two microcontrollers (ATmega328P). Microcontroller-1 is interfaced with compass module, GPS module, DF Player mini and nRF24L01 module. This microcontroller determines the relative position and the relative heading as seen from one vehicle to another. Microcontroller-2 is used to measure the speed of vehicle digitally. The resulting data from these microcontrollers are transmitted separately and serially through UART interface to FPGA. At FPGA, different signal processing such as speed comparison, turn comparison, distance range measurement and vehicle operation processing, are carried out to generate the voice announcement command, warning signals, event signals, and such outputs are utilized to warn drivers about potential accidents and prevent crashes before event happens.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3701
Author(s):  
Ju-Hyeon Seong ◽  
Soo-Hwan Lee ◽  
Won-Yeol Kim ◽  
Dong-Hoan Seo

Wi-Fi round-trip timing (RTT) was applied to indoor positioning systems based on distance estimation. RTT has a higher reception instability than the received signal strength indicator (RSSI)-based fingerprint in non-line-of-sight (NLOS) environments with many obstacles, resulting in large positioning errors due to multipath fading. To solve these problems, in this paper, we propose high-precision RTT-based indoor positioning system using an RTT compensation distance network (RCDN) and a region proposal network (RPN). The proposed method consists of a CNN-based RCDN for improving the prediction accuracy and learning rate of the received distances and a recurrent neural network-based RPN for real-time positioning, implemented in an end-to-end manner. The proposed RCDN collects and corrects a stable and reliable distance prediction value from each RTT transmitter by applying a scanning step to increase the reception rate of the TOF-based RTT with unstable reception. In addition, the user location is derived using the fingerprint-based location determination method through the RPN in which division processing is applied to the distances of the RTT corrected in the RCDN using the characteristics of the fast-sampling period.


Sign in / Sign up

Export Citation Format

Share Document