Spectrum efficiency maximization for cooperative power beacon-enabled wireless powered communication networks

2021 ◽  
Vol 18 (12) ◽  
pp. 230-251
Author(s):  
Wenjun Xu ◽  
Wei Chen ◽  
Yongjian Fan ◽  
Zhi Zhang ◽  
Xinxin Shi
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Kan Zheng ◽  
Suling Ou ◽  
Xuefeng Yin

The exponential traffic growth of wireless communication networks gives rise to both the insufficient network capacity and excessive carbon emissions. Massive multiple-input multiple-output (MIMO) can improve the spectrum efficiency (SE) together with the energy efficiency (EE) and has been regarded as a promising technique for the next generation wireless communication networks. Channel model reflects the propagation characteristics of signals in radio environments and is very essential for evaluating the performances of wireless communication systems. The purpose of this paper is to investigate the state of the art in channel models of massive MIMO. First, the antenna array configurations are presented and classified, which directly affect the channel models and system performance. Then, measurement results are given in order to reflect the main properties of massive MIMO channels. Based on these properties, the channel models of massive MIMO are studied with different antenna array configurations, which can be used for both theoretical analysis and practical evaluation.


Author(s):  
Zeyad Elsaraf ◽  
Abbas Ahmed ◽  
Faheem Ahmad Khan ◽  
Qasim Zeeshan Ahmed

AbstractIn the next generation of mobile communication networks, unprecedented challenges are required to be met, such as much higher data rates and spectrum efficiency, lower latency, and massive connectivity. Non-orthogonal multiple access (NOMA) has recently been proposed as a promising technology to achieve much superior spectral efficiency compared to conventional orthogonal multiple access techniques employed in present communication systems. A salient feature of NOMA is its use of successive interference cancellation (SIC) to decode users’ information when multiple users are allowed to transmit in same time/frequency/code domain. In this paper, we aim to exploit an aspect of SIC, namely the availability of other users’ data to realize a cooperative NOMA system. EXtrinsic information transfer (EXIT) charts are utilized to examine the performance of proposed system in terms of user fairness while employing IRregular convolutional codes (IRCC)s. The EXIT chart using IRCC evaluates the convergence analysis for the proposed system. Further, to evaluate the system performances in cooperative NOMA system, we have derived the expressions for the achievable rates which are obtained independently and utilized them in evaluating the experimental data for the proposed NOMA model.


Author(s):  
Zhenwei Zhang ◽  
Hua Qu ◽  
Jihong Zhao ◽  
Wei Wang

Cooperative Non-Orthogonal Multiple Access (NOMA) with Simultaneous Wireless Information and Power Transfer (SWIPT) communication can effectively improve the spectrum efficiency and energy efficiency of the wireless networks with extend coverage. An important design issue is to incentivize a relaying center user to participate in the cooperative process and achieve a win-win situation to both the BS and the center user. Some private information of the center users are hidden from the BS in the networks. We apply a contract theory-based incentive mechanism under such asymmetric information scenario to incentives center user to join the cooperative communication to maximize the BS profit utility and to guarantee the center user’s expect payoff. A match theory-based Gale-Shapley algorithm is proposed to obtain the optimal strategy with low computation complexity. Simulation results indicated the network performance of our proposed cooperative transmission is much better than the conventional NOMA transmission and the benefit utility of the BS with the stable match strategy is nearly close to the complete channel state information multi-users scenario while the center users get the satisfied expect payoffs.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1161
Author(s):  
Zhenwei Zhang ◽  
Hua Qu ◽  
Jihong Zhao ◽  
Wei Wang

Cooperative Non-Orthogonal Multiple Access (NOMA) with Simultaneous Wireless Information and Power Transfer (SWIPT) communication can not only effectively improve the spectrum efficiency and energy efficiency of wireless networks but also extend their coverage. An important design issue is to incentivize a full duplex (FD) relaying center user to participate in the cooperative process and achieve a win–win situation for both the base station (BS) and the center user. Some private information of the center users are hidden from the BS in the network. A contract theory-based incentive mechanism under this asymmetric information scenario is applied to incentivize the center user to join the cooperative communication to maximize the BS’s benefit utility and to guarantee the center user’s expected payoff. In this work, we propose a matching theory-based Gale–Shapley algorithm to obtain the optimal strategy with low computation complexity in the multi-user pairing scenario. Simulation results indicate that the network performance of the proposed FD cooperative NOMA and SWIPT communication is much better than the conventional NOMA communication, and the benefit utility of the BS with the stable match strategy is nearly close to the multi-user pairing scenario with complete channel state information (CSI), while the center users get the satisfied expected payoffs.


Author(s):  
Ravikant Saini ◽  
Swades De

Mobile connectivity these days is no more a privilege but a basic necessity. This has led to exponentially-increasing data rate demands over the network, causing tremendous pressure to the access network service planners. Orthogonal frequency division multiple access (OFDMA) is being considered for resource allocation in higher generation communication networks, where spectrum efficiency improvement while fulfilling the users' data rate demands is a key aspect of interest. Normally resource allocation is considered from the viewpoint of users, with the users selecting their best available subcarriers. In this chapter, the resource allocation problem is approached from the subcarrier's perspective. Besides the conventional user-based scheme, a recent subcarrier-based shared resource allocation scheme is presented that selects the best user(s) for each subcarrier and assigns the subcarrier either to a single user or more than one user on time-shared basis according to their current SNRs. Unlike the user-based schemes, in the proposed scheme each user can contend for any subcarrier.


2014 ◽  
Vol 926-930 ◽  
pp. 3669-3672
Author(s):  
Guang Long Yang ◽  
Xiao Wang ◽  
Xue Zhi Tan

For cognitive radio environment needs of different users, A space-time diversity multi-carrier code division multiple access (OFDM-CDMA) technology architecture of the cognitive radio (CR) system is used, a novel non-cooperative power control algorithm and the price game (NPGP), in order to protect the economic interests of the spectrum of network providers, to achieve a fair and efficient allocation of spectrum resources have cognitive and improve spectrum efficiency. Simulation results show that the algorithm under the protection of the economic spectrum premise network provider benefits, both to ensure the fair and efficient allocation of spectrum resources, and achieve effective control of power users, system performance improved significantly.


Author(s):  
Zhu Han ◽  
Dusit Niyato ◽  
Walid Saad ◽  
Tamer Basar ◽  
Are Hjorungnes

Sign in / Sign up

Export Citation Format

Share Document