Controlling Factors of the Particle Size of Spherical Silica Synthesized by Wet and Dry Processes

2021 ◽  
Vol 6 (7) ◽  
pp. 118-121
Author(s):  
Keiji Saiki ◽  
Toshihiro Ishikawa

We clarified the controlling factors of the particle size of the amorphous silica synthesized by wet and dry processes. In the wet process using methyl-trimethoxy-silane as a starting monomer, the obtained particle size can be easily controlled by changing the reaction time appropriately. However, to obtain larger particles, a relatively long time is needed. After the condensation reaction was conducted for 50h, the silica particles (D50: 3μm) were synthesized by calcination at 550oC in air. To synthesize larger silica particles, we used silica-seed particles (8μm) to obtain very large spherical silica particles (D50: 20μm). Thus, although the wet process needs a relatively long reaction time, it is very useful for synthesizing spherical silica particles with a wide range of particle size. In the dry process, we used methyl-trimethoxy-silane (MTMS), tetra-ethoxy-silane (TEOS), and octamethyl-cyclotetrasiloxane (OMCTSO) as the starting materials. In this process, the size of the silica particles was dominated by the molecular structure of the monomer, in particular, the number of silicon atoms contained in the monomer and the bulkiness of the substituent group. The largest silica particles were synthesized from OMCTSO, which contains the largest number of silicon atoms.

2018 ◽  
Vol 281 ◽  
pp. 65-70
Author(s):  
Shu Lin Wang ◽  
Zhao Wang ◽  
Bing Hao Li ◽  
Man Xu

The spherical silica particles were prepared by sol-gel method with TEOS as precursor, ethanol as solvent in the presence of ammonia. The effects of reaction temperature and the amount of ammonia and TEOS on the size and morphology of silica particles were investigated. The hydrolysis temperature , alkali and TEOS content does not affect the morphology of silica, the silica particles were spherical; With the increase of hydrolysis temperature, particle size of silica showed first increased and then decreased, when the hydrolysis temperature is 30 °C, the silica particle size up to 0.6 μm, when the hydrolysis temperature is 60 °C, the silica particle size is 0.15 μm; With the increase of the content of alkali, silica particle size showed first increased and then decreased, when the alkali content is 20 ml, the silica particle size up to 0.6 μm and when the alkali content is 10 ml, the silica particle size is 0.2 μm; With the increase of TEOS dosage, the amount of spherical silica increased and the particle size of silica spherical particles first increased and then decreased.


2017 ◽  
Vol 727 ◽  
pp. 519-526 ◽  
Author(s):  
Li Ya Chen ◽  
Ji Fang Fu ◽  
Wen Qi Yu ◽  
Lei Huang ◽  
Jing Tao Yin ◽  
...  

Spherical silica particles with mean diameter 350 nm, 500 nm and 1000 nm were used to modify o-cresol-novolac epoxy resin (ECN) at a ranging constant weight fraction from 0 to 20 wt%. The effects of particle size and fillers content on the impact strength, flexural modulus, dynamic mechanical analysis (DMA), coefficient of thermal expansion (CTE), dielectric properties and bulk resistivities of epoxy composites filled with spherical silica particles were investigated. The results revealed that the impact strength and flexural modulus showed significant improvements with the addition of spherical silica particles. The glass transition temperature (Tg) of composites was higher than that of pure epoxy. The maximum increment of Tg was 34 °C by the addition of 2 wt% D500. The CTE of the composites with different size silica exhibit much lower dimension changes than that of pure epoxy. The dielectric constant was decreased with the addition of spherical silica particles. However, the particle size exhibited weakly effect on the dielectric properties. The bulk resistivities of the composites have greatly improved compared to the pure epoxy and increase with decreasing the particle size.


RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17108-17115
Author(s):  
Mahnaz Mirheidari ◽  
Javad Safaei-Ghomi

GO@f-SiO2@Co is a heterogenous catalyst composed of spherical silica particles grafted on the surface of graphene oxide with ethylenediamine ligands and coordination with Co(ii). We assessed the activity of the catalyst for the synthesis of aminonaphthoquinones.


2004 ◽  
Vol 69 (9) ◽  
Author(s):  
P. Tartaj ◽  
T. González-Carreño ◽  
O. Bomatí-Miguel ◽  
C. J. Serna ◽  
P. Bonville

1987 ◽  
Vol 3 (1) ◽  
pp. 86
Author(s):  
Yasuo Azuma ◽  
Yoshimi Tajima ◽  
Nobuo Ōshima ◽  
Kensuke Suehiro

2005 ◽  
Vol 297-300 ◽  
pp. 207-212 ◽  
Author(s):  
Soon Chul Kwon ◽  
Tadaharu Adachi ◽  
Wakako Araki ◽  
Akihiko Yamaji

We investigated the particle size effects on the fracture toughness of epoxy resin composites reinforced with spherical-silica particles. The silica particles had different mean particle diameters of between 1.56 and 0.24µm and were filled with bisphenol A-type epoxy resin under different mixture ratios of small and large particles and a constant volume fraction for all particles of 0.30. As the content with the added smaller particle increased, the viscosity of each composite before curing remarkably increased. We conducted the single edge notched bending test (SENB) to measure the mode I fracture toughness of each composite. The fracture surface with the small particle content exhibited more rough areas than the surface with larger particles. The fracture toughness increased below the small particle content of 0.8 and saturated above it. Therefore, near the small particle content of 0.8, the composite had a relatively low viscosity and a high fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document