scholarly journals Karakterisasi sifat fungsional pati sagu (Metroxylon sagu Rottb) dengan modifikasi taut silang sebagai bahan cangkang kapsul [Characterization of sago starch (Metroxylon sagu Rottb) functional properties with cross linking modification ascapsule shell]

2021 ◽  
Vol 13 (2) ◽  
pp. 65
Author(s):  
Desi Mustika Amaliyah, M.T. ◽  
Hamlan Ihsan
2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Suk Fun Chin ◽  
Suh Cem Pang ◽  
Lih Shan Lim

Starch tartarate nanoparticles were prepared by esterification reaction between native sago starch (Metroxylon sagu) and tartaric acid using dimethyl sulphoxide (DMSO) as a solvent and 2-dimethylamino pyridine (DMAP) as a catalyst at 100°C. The substitution of tartaric acid onto native sago starch was confirmed by the FTIR spectra which showed the presence of carbonyl group absorption band of tartarate ester. The solubility of the as-synthesized starch tartarate nanoparticles was observed to increase linearly with increase in the degrees of substitution. Under optimized synthesis conditions, starch tartarate nanoparticles of mean particle sizes which ranged from 200 nm to 300 nm were produced.


2018 ◽  
Vol 9 (11) ◽  
pp. 5560-5568 ◽  
Author(s):  
Yihan Liu ◽  
Lin Huang ◽  
Dong Zheng ◽  
Yu Fu ◽  
Mengying Shan ◽  
...  

The functional properties of bovine serum albumin were significantly improved by Bacillus subtilis transglutaminase with good thermal and pH stability.


2018 ◽  
Vol 69 (7) ◽  
pp. 1756-1759 ◽  
Author(s):  
Luminita Confederat ◽  
Iuliana Motrescu ◽  
Sandra Constantin ◽  
Florentina Lupascu ◽  
Lenuta Profire

The aim of this study was to optimize the method used for obtaining microparticles based on chitosan � a biocompatible, biodegradable, and nontoxic polymer, and to characterize the developed systems. Chitosan microparticles, as drug delivery systems were obtained by inotropic gelation method using pentasodiumtripolyphosphate (TPP) as cross-linking agent. Chitosan with low molecular weight (CSLMW) in concentration which ranged between 0.5 and 5 %, was used while the concentration of cross-linking agent ranged between 1 and 5%. The characterization of the microparticles in terms of shape, uniformity and adhesion was performed in solution and dried state. The size of the microparticles and the degree of swelling were also determined. The structure and the morphology of the developed polymeric systems were analyzed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).The average diameter of the chitosan microparticles was around 522 �m. The most stable microparticles were obtained using CSLMW 1% and TPP 2% or CSLMW 0.75%and TPP 1%. The micropaticles were spherical, uniform and without flattening. Using CSLMW in concentration of 0.5 % poorly cross-linked and crushed microparticles have been obtained at all TPP concentrations. By optimization of the method, stable chitosan-based micropaticles were obtained which will be used to develop controlled release systems for drug delivery.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 948
Author(s):  
Nicola Zerbinati ◽  
Sabrina Sommatis ◽  
Cristina Maccario ◽  
Maria Chiara Capillo ◽  
Giulia Grimaldi ◽  
...  

(1) Background: Injectable hyaluronic acid (HA) dermal fillers are used to restore volume, hydration and skin tone in aesthetic medicine. HA fillers differ from each other due to their cross-linking technologies, with the aim to increase mechanical and biological activities. One of the most recent and promising cross-linkers is polyethylene glycol diglycidyl ether (PEGDE), used by the company Matex Lab S.p.A., (Brindisi, Italy) to create the HA dermal filler PEGDE family. Over the last few years, several studies have been performed to investigate the biocompatibility and biodegradability of these formulations, but little information is available regarding their matrix structure, rheological and physicochemical properties related to their cross-linking technologies, the HA content or the degree of cross-linking. (2) Methods: Seven different injectable HA hydrogels were subjected to optical microscopic examination, cohesivity evaluation and rheological characterization in order to investigate their behavior. (3) Results: The analyzed cross-linked dermal fillers showed a fibrous “spiderweb-like” matrix structure, with each medical device presenting different and peculiar rheological features. Except for HA non cross-linked hydrogel 18 mg/mL, all showed an elastic and cohesive profile. (4) Conclusions: The comparative analysis with other literature works makes a preliminary characterization of these injectable medical devices possible.


2021 ◽  
pp. 009524432110061
Author(s):  
Bo Yang ◽  
Balakrishnan Nagarajan ◽  
Pierre Mertiny

Polymers may absorb fluids from their surroundings via the natural phenomenon of swelling. Dimensional changes due to swelling can affect the function of polymer components, such as in the case of seals, microfluidic components and electromechanical sensors. An understanding of the swelling behavior of polymers and means for controlling it can improve the design of polymer components, for example, for the previously mentioned applications. Carbon-based fillers have risen in popularity to be used for the property enhancement of resulting polymer composites. The present investigation focuses on the effects of three carbon-based nano-fillers (graphene nano-platelets, carbon black, and graphene nano-scrolls) on the dimensional changes of polydimethylsiloxane composites due to swelling when immersed in certain organic solvents. For this study, a facile and expedient methodology comprised of optical measurements in conjunction with digital image analysis was developed as the primary experimental technique to quantify swelling dimensional changes of the prepared composites. Other experimental techniques assessed polymer cross-linking densities and elastic mechanical properties of the various materials. The study revealed that the addition of certain carbon-based nano-fillers increased the overall swelling of the composites. The extent of swelling further depended on the organic solvent in which the composites were immersed in. Experimental findings are contrasted with published models for swelling prediction, and the role of filler morphology on swelling behavior is discussed.


Sign in / Sign up

Export Citation Format

Share Document