Inhibitory Effect of Oral Thin Films (OTFs) Containing Xylitol Against Streptococcus mutans

2022 ◽  
Vol 16 (1) ◽  
pp. 124
Author(s):  
Elizabeth Yi Ern Teng ◽  
Hee Xixian ◽  
Muhamad Fareez Ismail

Dental Caries is a chronic disease affecting half of the global population, causing pain and discomfort due to progressive damage to the teeth. Whilst xylitol has been studied for its effect on dental caries prevention, current practices present few limitations for its successful oral delivery, including short residence time in the mouth and poor patient compliance. Recently, oral thin films (OTFs) emerged as an alternative to delivering xylitol in the oral cavity. This research aims to develop novel OTFs containing xylitol with extended-release properties (as determined by the disintegration time) and to investigate its effect on a cariogenic bacterial strain, Streptococcus mutans. The minimum inhibitory concentration (MIC) of xylitol was determined. Employing the microdilution broth method, the antibacterial activity of the oral thin films containing xylitol for oral S. mutans was performed with simulated salivary fluid, incubated at 1, 4, and 10 h. The MIC of xylitol was found at 10%. Meanwhile, there was no significant difference in the inhibition of S. mutans (p > 0.05) between the control, OTFs (10 h), and xylitol-OTF (1 h), with the latter, demonstrated only 16.58% inhibition. Interestingly, when compared to xylitol-OTF (1 h), xylitol-OTF showed significant inhibition (p < 0.05) to S. mutans after four h (+53.24 %) and almost a complete inhibition after ten h (-92.58 %). These results suggest that the OTFs demonstrated a gradual release of xylitol and inhibited oral biofilm formation by decreasing the growth of S. mutans in a time-dependent manner. Most importantly, the study indicated the successful development of a novel xylitol-OTF with potential as an oral health biotherapeutic agent.

1996 ◽  
Vol 63 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Chun W. Wong ◽  
Geoffrey O. Regester ◽  
Geoffrey L. Francis ◽  
Dennis L. Watson

SummaryStudies on the immunomodulatory activities of ruminant milk and colostral whey fractions were undertaken. By comparing with boiled colostral whey in a preliminary experiment, a putative heat-labile immunostimulatory factor for antibody responses was found to be present in ovine colostral whey. Studies were then undertaken in sheep in which the efferent prefemoral lymphatic ducts were cannulated bilaterally, and immune responses in the node were measured following subcutaneous injection in the flank fold of whey protein preparations of various purities. A significant sustained decline of efferent lymphocyte output was observed following injection with autologous crude milk whey or colostral whey preparations, but no changes were observed in interferon-gamma levels in lymph plasma. Two bovine milk whey fractions (lactoperoxidase and lactoferrin) of high purity were compared in bilaterally cannulated sheep. A transient decline over the first 6 h was seen in the efferent lymphocyte output and lymph flow rate after injection of both fractions. A significant difference was seen between the two fractions in interferongamma levels in lymph at 6 h after injection. However, no significant changes in the proportion of the various efferent lymphocyte phenotypes were seen following either treatment. Whereas both fractions showed a significant inhibitory effect in a dose-dependent manner on the proliferative response of T lymphocytes, but not B lymphocytes, to mitogenic stimulation in vitro, no similar changes were seen following in vivo stimulation with these two fractions.


2001 ◽  
Vol 45 (2) ◽  
pp. 382-392 ◽  
Author(s):  
Zeruesenay Desta ◽  
Nadia V. Soukhova ◽  
David A. Flockhart

ABSTRACT Isoniazid (INH) remains the most safe and cost-effective drug for the treatment and prophylaxis of tuberculosis. The use of INH has increased over the past years, largely as a result of the coepidemic of human immunodeficiency virus infection. It is frequently given chronically to critically ill patients who are coprescribed multiple medications. The ability of INH to elevate the concentrations in plasma and/or toxicity of coadministered drugs, including those of narrow therapeutic range (e.g., phenytoin), has been documented in humans, but the mechanisms involved are not well understood. Using human liver microsomes (HLMs), we tested the inhibitory effect of INH on the activity of common drug-metabolizing human cytochrome P450 (CYP450) isoforms using isoform-specific substrate probe reactions. Incubation experiments were performed at a single concentration of each substrate probe at its Km value with a range of INH concentrations. CYP2C19 and CYP3A were inhibited potently by INH in a concentration-dependent manner. At 50 μM INH (∼6.86 μg/ml), the activities of these isoforms decreased by ∼40%. INH did not show significant inhibition (<10% at 50 μM) of other isoforms (CYP2C9, CYP1A2, and CYP2D6). To accurately estimate the inhibition constants (Ki values) for each isoform, four concentrations of INH were incubated across a range of five concentrations of specific substrate probes. The meanKi values (± standard deviation) for the inhibition of CYP2C19 by INH in HLMs and recombinant human CYP2C19 were 25.4 ± 6.2 and 13 ± 2.4 μM, respectively. INH showed potent noncompetitive inhibition of CYP3A (Ki = 51.8 ± 2.5 to 75.9 ± 7.8 μM, depending on the substrate used). INH was a weak noncompetitive inhibitor of CYP2E1 (Ki = 110 ± 33 μM) and a competitive inhibitor of CYP2D6 (Ki = 126 ± 23 μM), but the mean Ki values for the inhibition of CYP2C9 and CYP1A2 were above 500 μM. Inhibition of one or both CYP2C19 and CYP3A isoforms is the likely mechanism by which INH slows the elimination of coadministered drugs, including phenytoin, carbamazepine, diazepam, triazolam, and primidone. Slow acetylators of INH may be at greater risk for adverse drug interactions, as the degree of inhibition was concentration dependent. These data provide a rational basis for understanding drug interaction with INH and predict that other drugs metabolized by these two enzymes may also interact.


2018 ◽  
Vol 66 (4) ◽  
pp. 1519
Author(s):  
Mailen Ortega Cuadros ◽  
Adriana Patricia Tofiño Rivera ◽  
Luciano Jose Merini ◽  
Maria Cecilia Martinez Pabon

Dental caries is a pathology of multifactorial origin and currently natural products are an efficient alternative treatment; The work sought to evaluate the antimicrobial activity of the Cymbopogon citratus essential oil and the citral and myrcene components against Streptococcus mutans ATCC UA159, as well as their cytotoxicity on keratinocytes and human fibroblasts. The viability effect against Streptococcus mutans on biofilms was evaluated through exposure to the three substances by using the MBEC technique-high-throughput at concentrations of 1, 0.1, and 0.01 µg/mL and chlorhexidine as positive control. The cytotoxicity of the compounds was evaluated on keratinocytes and fibroblasts through the MTT reduction technique, using 0.5 mM H2O2 as cell-death control (negative control) and ethanol 1% as vehicle control (positive control). The three substances evaluated had effects on the viability of Streptococcus mutans with mortality between 74% and 96%, without significant difference among them (p > 0.393); additionally, no cytotoxicity was evident on keratinocytes and fibroblasts in a 24-h treatment. The substances evaluated showed significant antimicrobial effects; hence, these should be studied further as potential co-adjuvants to prevent dental caries that cause minor adverse effects


2020 ◽  
Vol 10 (2) ◽  
pp. 48
Author(s):  
Sri Kunarti ◽  
Aulia Ramadhani ◽  
Laskmiari Setyowati

Background: Dental caries is one of the most common infectious diseases and often occurs in the community caused by bacteria. Attached bacteria in the tooth surface for a long time will form a biofilm and will lead to demineralization characterized by damage in the structure of the tooth enamel. The bacteria that cause dental caries and can form biofilms is Streptococcus mutans. The bacteria inside biofilms are more resistant to antibacterial agents. Flavonoids in mangosteen pericarp extract can be a cleaner alternative for the anti-biofilm cavity that has properties against Streptococcus mutans. Purpose: To determine the activity of flavonoids in mangosteen pericarp extract at a certain concentration against Streptococcus mutans bacteria. Methods: This study was a laboratory experimental study with a post-test only control group design. Streptococcus mutans were diluted according to the Mc Farland dilution standard 106 in Tryptic Soy Broth (TSB) medium and put in a flexible U-bottom microtiter plate. Then it was incubated for 5x24 hours and checked using crystal violet simple staining to see the formation of biofilms. Flavonoid extract of mangosteen pericarp performed serial dilution in a concentration of 100%, 50%, 25%, 12.5%, 6.25%, 3.125%, 1.56%, and 0.78% was added, and the incubation process were conducted for 1x24 hours. OD (Optical Density) readings were done with a wavelength of 595 nm. Results: There was a significant difference between the test groups and the positive control group. The concentration of 100% had the anti-biofilm activity and showed the value of the highest percentage of inhibition, whilst the concentration of 0.78% showed a minimum biofilm inhibition concentration. The results were demonstrated by a statistical analysis test. Conclusion: Flavonoid extract of mangosteen pericarp at a certain concentration has anti-biofilm activity against Streptococcus mutans biofilm.


2020 ◽  
pp. 20-23
Author(s):  
Sneha Upadhyay ◽  
Jyoti Bhavthankar ◽  
Mandakini Mandale ◽  
Nivedita Kaorey

Background: Asthma and its medications have been linked to oral diseases in asthmatic children. Aim: Assessment of the dental caries status, salivary Streptococcus mutans count and S. mutans colony score in children receiving inhaled anti asthmatic medications and their comparison in healthy children Material and Method: A cross-sectional study was performed on 40 asthmatic children and 40 healthy children in the age group of 6-14 years. DMFT/deft indices were calculated and saliva samples were collected. Diluted saliva was inoculated on MSB agar plates. S. mutans count and colony score were analysed after 24-48 hours of inoculation. Results: Statistically significant difference was observed in the mean DMFT/deft index, salivary S. mutans load and S. mutans colony score in children of the asthmatic group and control group. Conclusion: Prevalence of dental caries and cariogenic bacteria is higher in asthmatic children.


2002 ◽  
Vol 76 (8) ◽  
pp. 3596-3604 ◽  
Author(s):  
Shu-Fen Wu ◽  
Chyan-Jang Lee ◽  
Ching-Len Liao ◽  
Raymond A. Dwek ◽  
Nicole Zitzmann ◽  
...  

ABSTRACT Endoplasmic reticulum (ER) α-glucosidase inhibitors, which block the trimming step of N-linked glycosylation, have been shown to eliminate the production of several ER-budding viruses. Here we investigated the effects of one such inhibitor, N-nonyl-deoxynojirimycin (NN-DNJ), a 9-carbon alkyl iminosugar derivative, on infection by Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2). In the presence of NN-DNJ, JEV and DEN-2 infections were suppressed in a dose-dependent manner. This inhibitory effect appeared to influence DEN-2 infection more than JEV infection, since lower concentrations of NN-DNJ substantially blocked DEN-2 replication. Secretion of the flaviviral glycoproteins E and NS1 was greatly reduced, and levels of DEN-2 viral RNA replication measured by fluorogenic reverse transcription-PCR were also decreased, by NN-DNJ. Notably, the viral glycoproteins, prM, E, and NS1 were found to associate transiently with the ER chaperone calnexin, and this interaction was affected by NN-DNJ, suggesting a potential role of calnexin in the folding of flaviviral glycoproteins. Additionally, in a mouse model of lethal challenge by JEV infection, oral delivery of NN-DNJ reduced the mortality rate. These findings show that NN-DNJ has an antiviral effect on flavivirus infection, likely through interference with virus replication at the posttranslational modification level, occurring mainly in the ER.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Santichai Nunpan ◽  
Chatrudee Suwannachart ◽  
Kornchanok Wayakanon

Streptococcus mutanspredominantly creates an acidic environment in an oral cavity. This results in dental demineralization and carious lesions. The probiotics are beneficial microorganisms that modulate the bacterial balance in the digestive system. Prebiotics are defined as nondigestible oligosaccharides that are utilized for the selective stimulation of the beneficial microorganisms. The objective of this study was to evaluate the efficacy of the prebiotics, galactooligosaccharides (GOS) and fructooligosaccharides (FOS), for enhancing the probioticLactobacillus acidophilusATCC 4356, for inhibitingStreptococcus mutans(A32-2) for the prevention of dental caries. The growth rate of theS. mutanssignificantly decreased when cocultured withL. acidophilusin the GOS-supplemented medium at 3%, 4%, and 5%. In the FOS-supplemented medium, the growth rate ofS. mutanssignificantly decreased in all concentrations when cocultured withL. acidophilus. There was no significant difference in the growth rate ofL. acidophilusin all concentrations of either GOS or FOS. It can be concluded that the growth rate ofS. mutanswas significantly retarded when cocultured withL. acidophilusand the proper concentration of prebiotics. These prebiotics have potential for a clinical application to activate the function of the naturally intraoralL. acidophilusto inhibitS. mutans.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3170 ◽  
Author(s):  
Vika Gabe ◽  
Tomas Kacergius ◽  
Saleh Abu-Lafi ◽  
Mouhammad Zeidan ◽  
Basheer Abu-Farich ◽  
...  

The accumulation of biofilm by Streptococcus mutans bacteria on hard tooth tissues leads to dental caries, which remains one of the most prevalent oral diseases. Hence, the development of new antibiofilm agents is of critical importance. The current study reports the results from testing the effectiveness of octyl gallate (C8-OG) against: (1) S. mutans biofilm formation on solid surfaces (polystyrene, glass), (2) acidogenicity, (3) and the expression of biofilm-related genes. The amount of biofilm formed by S. mutans bacteria was evaluated using the colorimetric method and optical profilometry. The pH of the biofilm growth medium was measured with microelectrode. A quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was used to assess the expression of genes encoding glucan binding protein B (gbpB), glucosyltransferases B, -C, -D (gtfB, -C, -D), and the F-ATPase β subunit of the F1 protein (atpD). The results show that C8-OG significantly diminished biofilm formation by exposed S. mutans on solid surfaces and suppressed acidogenicity in a dose-dependent manner, compared to unexposed bacteria (p < 0.05). The C8-OG concentration of 100.24 µM inhibited S. mutans biofilm development on solid surfaces by 100% and prevented a decrease in pH levels by 99%. In addition, the RT-qPCR data demonstrate that the biofilm-producing bacteria treated with C8-OG underwent a significant reduction in gene expression in the case of the four genes under study (gbpB, gtfC, gtfD, and atpD), and there was a slight decrease in expression of the gtfB gene. However, C8-OG treatments did not produce significant expression change compared to the control for the planktonic cells, although there was a significant increase for the atpD gene. Therefore, C8-OG might be a potent antibiofilm and/or anticaries agent for oral formulations that aim to reduce the prevalence of dental caries.


Toxins ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 699
Author(s):  
Chunli Li ◽  
Mengqi Ban ◽  
Fei Bai ◽  
Jianzhao Chen ◽  
Xiaoquan Jin ◽  
...  

Syb-prII, a recombinant neurotoxic polypeptide, has analgesic effects with medicinal value. Previous experiments indicated that Syb-prII displayed strong analgesic activities. Therefore, a series of in vivo and vitro experiments were designed to investigate the analgesic and anti-inflammatory properties and possible mechanisms of Syb-prII. The results showed that administered Syb-prII-1 and Syb-prII-2 (0.5, 1, 2.0 mg/kg, i.v.) to mice significantly reduced the time of licking, biting, or flicking of paws in two phases in formalin-induced inflammatory nociception. Syb-prII-1 inhibited xylene-induced auricular swelling in a dose-dependent manner. The inhibitory effect of 2.0 mg/kg Syb-prII-1 on the ear swelling model was comparable to that of 200 mg/kg aspirin. In addition, the ELISA and Western blot analysis suggested that Syb-prII-1 and Syb-prII-2 may exert an analgesic effect by inhibiting the expression of Nav1.8 and the phosphorylation of ERK, JNK, and P38. Syb-prII-1 markedly suppressed the expression of IL-1β, IL-6, and TNF-α of mice in formalin-induced inflammatory nociception. We used the patch-clamp technique and investigated the effect of Syb-prII-1 on TTX-resistant sodium channel currents in acutely isolated rat DRG neurons. The results showed that Syb-prII-1 can significantly down regulate TTX-resistant sodium channel currents. In conclusion, Syb-prII mutants may alleviate inflammatory pain by significantly inhibiting the expression of Nav1.8, mediated by the phosphorylation of MAPKs and significant inhibition of TTX-resistant sodium channel currents.


2018 ◽  
Vol 773 ◽  
pp. 323-327
Author(s):  
Sroisiri Thaweboon ◽  
Boonyanit Thaweboon

Streptococcus mutans has been reported to be a major causative microorganism for oral biofilm associated with dental caries. Jasmine sambac or Arabian jasmine is a species of jasmine native to tropical and warm temperate regions particularly West and Southeast Asia. The antimicrobial activities of essential oil extracted from the flowers of J. sambac have been shown to attract researchers. Objective: To determine the anti-biofilm formation of S. mutans by mouthwash containing jasmine oil. Materials and Methods: S. mutans KPSK2, the cariogenic strain of oral streptococci was used in the study. The 24-h biofilms of S. mutans were formed on polystyrene plates treated with jasmine mouthwash. The 0.2% chlorhexidine gluconate and phosphate buffer saline mouthwash were used as a positive and negative control respectively. The amount of biofilm was quantified by crystal violet staining and spectrophotometry at an optical density of 595 nm. Results: Jasmine mouthwash showed a significant inhibitory effect on S. mutans biofilm formation by decreasing 43% of biofilm whereas that of chlorhexidine showed 71% reduction. Conclusion: The anti-biofilm formation property of jasmine mouthwash was elucidated; therefore it might be another drug of choice that can be used as an adjunct to control the oral health in the prevention of dental caries.


Sign in / Sign up

Export Citation Format

Share Document