scholarly journals Antibacterial potential of strawberries and basil extracts combination against Streptococcus sanguinis (ATCC 10556)

2021 ◽  
Vol 33 (3) ◽  
pp. 210
Author(s):  
Hendra Dian Adhita Dharsono ◽  
Denny Nurdin ◽  
Fajar Fatriadi ◽  
Yolanda Dwiutami Gondowidjojo ◽  
Ellizabeth Yunita ◽  
...  

Introduction: Streptococcus sanguinis is a commensal microorganism as well as a pioneer colony in forming dental plaque. Oral biofilm formation can be prevented by a mechanical cleaning procedure followed by the use of mouthwash. The current gold standard for mouthwash is chlorhexidine. Nevertheless, it has side effects that are not recommended for long-term use. Previous studies had proven that herbal-based mouthwashes such as basil leaves (Ocimum basilicum) and strawberry fruit (Fragaria x ananassa) have been shown to have antibacterial properties. The effectivity of antibacterial activity phenomenon in combined extracts has been reported in other studies. This research aims to observe the antibacterial potential of the F. x ananassa and O. basilicum extract combinations against S. sanguinis (ATCC 10556). Methods: The sample of this study was a combination of F. x ananassa and O. basilicum extract, which initially screened for their antibacterial activities. Antibacterial activities of F. x ananassa and O. basilicum extracts against S. sanguinis were observed using Kirby Bauer method, while Minimum Inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) by serial microdilution method. The 2% concentration from each extract was combined in 1:1, 1:2, and 2:1 volume ratio variations then tested for inhibitory zones, MIC, and MBC. Results: F. x ananassa extract had 0.125% and 0.25% for MIC and MBC respectively, while O. basilicum extract showed the value of MIC and MBC as 0.031% and 0.063% against S. sanguinis (ATCC 10556). The extract combinations in 1:1, 1:2, and 2:1 volume ratio variations showed 0.016% for MIC and 0.031% for MBC. Conclusions: It was concluded that combining extracts of 2 % F. x ananassa and 2% O. basilicum in various ratios were observably to have the antibacterial potential against S. sanguinis (ATCC 10556).

2020 ◽  
Vol 8 (5) ◽  
pp. 1060-1070 ◽  
Author(s):  
Feng Zhang ◽  
Mingming Zhou ◽  
Weizhong Gu ◽  
Zheng Shen ◽  
Xiaohui Ma ◽  
...  

Dicalcium silicate (C2S) cements doped with Zn or Cu exhibited appreciable osteogenic activity and prolonged antibacterial potential in comparison with C2S cement.


2021 ◽  
Vol 15 (4) ◽  
pp. 324-329
Author(s):  
Pengxiang Lai ◽  
Xin-Chen Zhang ◽  
Lin Zhu ◽  
Xin-Yu Li ◽  
Li-Chuan Liu

The essential oil (EO) of aerial parts of Mallotus repandus (Willd.) Muell. Arg. was extracted by hydrodistillation and characterized by GC/FID and GC/MS. Fifty-one compounds comprising 97.1% of the EO were identified, of which α-humulene (18.7%), β-selinene (12.8%), aciphyllene (10.7%), (E)-caryophyllene (8.4%), α-copaene (5.5%), humulene epoxide II (4.9%) and caryophyllene oxide (4.3%) were the major compounds. The EO was evaluated for antibacterial properties using broth microdilution method and crystal-violet static biofilm formation assay. The M. repandus EO possessed a bactericidal effect against tested gram-positive bacteria strains (MIC = MBC: 0.05-0.10 mg/mL). Further, the EO showed the ability to inhibit the biofilm formation of Staphylococcus aureus. In addition, the potential synergistic effect was assessed by checkerboard method. Combination of the M. repandus EO with Streptomycin showed synergistic effects against the tested bacterial strains. This study demonstrates that M. repandus EO could be further explored as good alternative for potential pharmaceuticals.


Author(s):  
Jayanta Sarma ◽  
Gurvinder Singh ◽  
Mukta Gupta ◽  
Reena Gupta ◽  
Bhupinder Kapoor

Objective: The synthesis of novel benzimidazole-hydrazone derivatives has been carried out based on the previous findings that both these pharmacophores possess potent antimicrobial activities. The antibacterial properties of synthesized derivatives were screened against both Gram-positive and Gram-negative bacteria.Methods: O-phenylenediamine on condensation with substituted aromatic acids in polyphosphoric acid gave benzimidazole nucleus which on reaction with ethyl chloroacetate and hydrazine hydrate in two different steps resulted in the formation of substituted acetohydrazides. The targeted compounds 6a-l were synthesized by reaction of substituted acetohydrazides with aromatic aldehydes and screened for their antibacterial potential by cup-plate method.Results: The synthesized benzimidazole-hydrazones exhibited moderate to strong antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The compounds 6a-6f were found to be most effective against S. aureus, E. coli, and P. aeruginosa. Among all the synthesized compounds, the zone of inhibition of 6f in highest concentration, i.e., 100 μg/ml were found to be >31 mm against all the stains of bacteria.Conclusion: The antibacterial results revealed that the synthetized derivatives have significant antimicrobial properties and further structure activity relationship studies may develop more potent and less toxic molecules.


Author(s):  
Mahmoud Osanloo ◽  
Abbas Abdollahi ◽  
Alireza Valizadeh ◽  
Niloufar Abedinpour

Background and Objectives: Plant-derived essential oils (EOs) shave many usages in health and medicine, such as anti- bacterial agents. The aim of this study was the improvement of antibacterial activities of two EOs using nanotechnology. Materials and Methods: Antibacterial activity was investigated on four important human pathogenic bacteria using the 96-well plate microdilution method, a quantitative approach. Eleven formulations were prepared using each of the EOs. Eventually, the best nanoformulation with the smallest particle size and polydispersive indices (PDI and SPAN) was selected using each EO for further investigations. Moreover, two microemulsions with similar ingredients and the same portion in comparison with two selected nanoemulsions were also prepared. Antibacterial activity of each EO was compared with its micro- and nano-emulsions. Results: The antibacterial efficacy of Zataria multiflora EO (ZMEO) was significantly better than Mentha piperita EO (MPEO). Besides, the antibacterial activity of nanoemulsion of ZMEO with a particle size of 129 ± 12 nm was significantly better than no- and micro-formulated forms of ZMEO. Interestingly, the efficiency of MPEO nanoemulsion (160 ± 25 nm) was also significantly better than MPEO and its micro-formulated form. Conclusion: Regardless of the intrinsic antibacterial property of two examined EOs, by formulating to nanoemulsion, their efficiencies were improved. Nanoemulsion of ZMEO introduced as an inexpensive, potent and green antibacterial agent.


2008 ◽  
Vol 76 (6) ◽  
pp. 2551-2559 ◽  
Author(s):  
Xiuchun Ge ◽  
Todd Kitten ◽  
Zhenming Chen ◽  
Sehmi P. Lee ◽  
Cindy L. Munro ◽  
...  

ABSTRACT Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis.


Author(s):  
REZON YANUAR ◽  
DEWI FATMA SUNIARTI ◽  
WIDURINI DJOHAN

Objective: Javanese turmeric is an Indonesian native medicinal plant with antibacterial activities. This study aimed to analyze the efficacy of identifiedJavanese turmeric ethanol extract (IJTEE) in eradicating Streptococcus sanguinis and Porphyromonas gingivalis biofilms.Methods: Biofilm assay: Single and combination biofilms formed at different phases were exposed to IJTEE in 0.5–25% concentrations for 1 h. Thepercentage of eradication was tested using the microtetrazolium assay.Results: The efficacy of IJTEE in eradicating the biofilm was equal to that of chlorhexidine against the early phase of biofilm formation. IJTEE is moreeffective against S. sanguinis biofilm formation than against P. gingivalis biofilm formation.Conclusion: IJTEE can eradicate S. sanguinis and P. gingivalis biofilms.


Author(s):  
Azadeh Foroughi ◽  
Pouya Pournaghi ◽  
Fariba Najafi ◽  
Akram Zangeneh ◽  
Mohammad Mahdi Zangeneh ◽  
...  

Medicinal plants are considered modern resources for producing agents that could act as alternatives to antibiotics in demeanor of antibiotic-resistant bacteria. The aim of the study was to evaluate the chemical composition and antibacterial activities of essential oil of Foeniculum vulgare (FV) against Pseudomonas aeruginosa and Bacillus subtilis. Gas chromatography mass spectrometry was done to specify chemical composion. As a screen test to detect antibacterial properties of the essential oil, agar disk and agar well diffusion methods were employed. Macrobroth tube test was performed to determinate MIC. The results indicated that the most substance found in FV essential oil was Trans-anethole (47.41 %), also the essential oil of FV with 0.007 g/ml concentration has prevented P. aeruginosa and with 0.002 g/ml concentration has prevented B. subtilis from the growth. Thus, the research represents the antibacterial effects of the medical herb on test P. aeruginosa and B. subtilis. We believe that the article provide support to the antibacterial properties of the essential oil. The results indicate the fact that the essential oil from the plant can be useful as medicinal or preservatives composition.


Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 93 ◽  
Author(s):  
Riau ◽  
Aung ◽  
Setiawan ◽  
Yang ◽  
Yam ◽  
...  

: Bacterial biofilm on medical devices is difficult to eradicate. Many have capitalized the anti-infective capability of silver ions (Ag+) by incorporating nano-silver (nAg) in a biodegradable coating, which is then laid on polymeric medical devices. However, such coating can be subjected to premature dissolution, particularly in harsh diseased tissue microenvironment, leading to rapid nAg clearance. It stands to reason that impregnating nAg directly onto the device, at the surface, is a more ideal solution. We tested this concept for a corneal prosthesis by immobilizing nAg and nano-hydroxyapatite (nHAp) on poly(methyl methacrylate), and tested its biocompatibility with human stromal cells and antimicrobial performance against biofilm-forming pathogens, Pseudomonas aeruginosa and Staphylococcus aureus. Three different dual-functionalized substrates—high Ag (referred to as 75:25 HAp:Ag); intermediate Ag (95:5 HAp:Ag); and low Ag (99:1 HAp:Ag) were studied. The 75:25 HAp:Ag was effective in inhibiting biofilm formation, but was cytotoxic. The 95:5 HAp:Ag showed the best selectivity among the three substrates; it prevented biofilm formation of both pathogens and had excellent biocompatibility. The coating was also effective in eliminating non-adherent bacteria in the culture media. However, a 28-day incubation in artificial tear fluid revealed a ~40% reduction in Ag+ release, compared to freshly-coated substrates. The reduction affected the inhibition of S. aureus growth, but not the P. aeruginosa. Our findings suggest that Ag+ released from surface-immobilized nAg diminishes over time and becomes less effective in suppressing biofilm formation of Gram-positive bacteria, such as S. aureus. This advocates the coating, more as a protection against perioperative and early postoperative infections, and less as a long-term preventive solution.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098774
Author(s):  
Jinpeng Zou ◽  
Yang Liu ◽  
Ruiwei Guo ◽  
Yu Tang ◽  
Zhengrong Shi ◽  
...  

The drug resistance of Pseudomonas aeruginosa is a worldwide problem due to its great threat to human health. A crude extract of Angelica dahurica has been proved to have antibacterial properties, which suggested that it may be able to inhibit the biofilm formation of P. aeruginosa; initial exploration had shown that the crude extract could inhibit the growth of P. aeruginosa effectively. After the adaptive dose of coumarin was confirmed to be a potential treatment for the bacteria’s drug resistance, “coumarin-antibiotic combination treatments” (3 coumarins—simple coumarin, imperatorin, and isoimperatorin—combined with 2 antibiotics—ampicillin and ceftazidime) were examined to determine their capability to inhibit P. aeruginosa. The final results showed that (1) coumarin with either ampicillin or ceftazidime significantly inhibited the biofilm formation of P. aeruginosa; (2) coumarin could directly destroy mature biofilms; and (3) the combination treatment can synergistically enhance the inhibition of biofilm formation, which could significantly reduce the usage of antibiotics and bacterial resistance. To sum up, a coumarin-antibiotic combination treatment may be a potential way to inhibit the biofilm growth of P. aeruginosa and provides a reference for antibiotic resistance treatment.


Sign in / Sign up

Export Citation Format

Share Document