scholarly journals A COMPARATIVE STUDY OF PHYSICAL PROPERTIES USING VARIOUS GRADES ASPHALT BINDER WITH DIFFERENT TYPE OF FIBERS

2020 ◽  
Vol 17 (1) ◽  
pp. 34
Author(s):  
Sady A. Tayh ◽  
Rana A. Yousif ◽  
Qais S. Banyhussan

For a long time, bitumen has been utilized as the essential material for asphalt pavement construction. The factors of increasing axle loads, increasing traffic movement, critical climate conditions and many forms failures in construction have steered many researchers to seek some methods to enhance the asphalt binder properties. Even though various types of modifiers have been utilized in strengthening asphalt concrete, fibers have attracted the most attention due to their high and desirable characteristics. It is realized that the good distribution of the modifier in asphalt binder can generate a strong network in the interior structure of the blend, causing bitumen mastic to be more coherent. In this study, a laboratory investigation of the rheological and physical properties of various grades of bitumen modified by two types of fibers was conducted. Three grades of asphalt were used in this study (60-70 penetration grade, 80-100 penetration grade and PG-76 grade) with two types of fibers with different percentages- Cellulose oil palm fiber (COPF) (0.15, 0.3, 0.45, 0.6, and 0.75%) by weight of asphalt and carbon fiber (0.75, 1.25, 1.75, 2.25, and 2.75%) by weight of asphalt. The results showed enhancement in physical performance of the modified bitumen in terms of the decrease in penetration values, as well as a rise in the softening point and viscosity values. The fibers’ modified asphalt binders showed improved rheological properties and can raise the grade of asphalt depending on the base asphalt type.

2019 ◽  
Vol 9 (8) ◽  
pp. 1567 ◽  
Author(s):  
Huang Xiaoming ◽  
Ismail Bakheit Eldouma

The overall objectives of this study were to determine the most appropriate additive for improving the physical properties and the medium- and high-temperature performances (mechanical performance) of asphalt binders. Three different types of modified binders were prepared: crumb rubber modifier (CRM), polypropylene (PP), and tafpack super (TPS), which had concentrations of 2%, 3%, 3.5%, and 4% by weight of asphalt binder, for each modifier. Their physical and rheological properties were evaluated by applying various tests such as ductility, rotational viscosity, toughness, and tenacity, as well as the dynamic shear rheometer (DSR) test. As a result, the physical properties of the modified bitumen binders were compared, as were the medium- and high-temperature performances (mechanical performance), which had temperatures of 58, 64, 70, 76, 82, and 88 °C, respectively. This was how the most appropriate modifier was determined. The results demonstrated that the asphalt binder properties significantly improved by utilizing CRM followed by PP and TPS modifiers. The increase in the rutting parameter (G*/sin(δ)) after asphalt modification indicated its excellent performance at both medium- and high-temperatures. Lastly, the CRM was determined as the most preferred additive because of its positive effect on the physical properties and enhancement of the medium- and high-temperature performance (mechanical performance).


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1067 ◽  
Author(s):  
Hechuan Li ◽  
Jianying Yu ◽  
Shaopeng Wu ◽  
Quantao Liu ◽  
Yuanyuan Li ◽  
...  

Induction heating is a valuable technology to repair asphalt concrete damage inside. However, in the process of induction heating, induced particles will release a large amount of heat to act on asphalt binder in a short time. The purpose of this paper was to study the effect of induction heating on asphalt binder aging in steel fibers modified asphalt concrete. The experiments were divided into two parts: induction heating of Dramix steel fibers coated with asphalt binder (DA) and steel wool fibers modified asphalt concrete. After induction heating, the asphalt binders in the samples were extracted for testing aging indices with Fourier Transform Infrared (FTIR), Dynamic Shear Rheometer (DSR), and Four-Components Analysis (FCA) tests. The aging of asphalt binder was analyzed identifying the change of chemical structure, the diversification of rheological properties, and the difference of component. The experiments showed that the binder inside asphalt concrete began aging during induction heating due to thermal oxygen reaction and volatilization of light components. However, there was no peak value of the carbonyl index after induction heating of ten cycles, and the carbonyl index of DA was equivalent to that of binder in asphalt concrete after three induction heating cycles, which indicated the relatively closed environment inside asphalt concrete can inhibit the occurrence of the aging reaction.


2016 ◽  
Vol 78 (7-2) ◽  
Author(s):  
Ahmad Nazrul Hakimi Ibrahim ◽  
Nur Izzi Md. Yusoff ◽  
Norliza Mohd Akhir ◽  
Muhamad Nazri Borhan

This study was conducted to investigate the physical properties and storage stability of the 80/100 penetration grade asphalt modified with geopolymer. In this research, fly ash and alkali activators, namely sodium silicate (Na2SiO3) and sodium hydroxide (NaOH), were used as geopolymer components. The penetration, Ring and Ball softening point, ductility, and viscosity tests were conducted to determine the physical properties of geopolymer modified asphalt (GMA). Five samples of asphalt binders with varying percentages of geopolymer, namely 0, 3, 5, 7 and 9%, by weight of asphalt binder were studied. Results show that geopolymer has good compatibility with asphalt binder. The addition of geopolymer into asphalt binder resulted in improved permanent deformation resistance of the modified binder compared to that of the conventional asphalt. In conclusion, geopolymer could be considered as a potential alternative in the modification of the properties of asphalt binder.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2888
Author(s):  
Sylwia Dziadosz ◽  
Mieczysław Słowik ◽  
Filip Niwczyk ◽  
Marcin Bilski

The paper presents the results of laboratory investigation on asphalt binders relaxation at low temperature, carried out in a ductilometer using the tensile test with continuous force measurement. Polymer modified asphalt binder samples consisting of a 50/70 penetration grade bitumen mixed with a concentrate of styrene-butadiene-styrene (SBS) modified bitumen—a 160/220 penetration grade bitumen modified with a SBS copolymer in the amount of 9%—were tested. Therefore, polymer modified binders containing 3%, 4.5%, 6% and 7.5% SBS, respectively, were obtained and investigated. Tensile tests were performed at −16 °C on samples before aging and subjected to short-term aging (RTFOT). Test results in the form of relaxation curves have been mathematically described using a modified generalized Maxwell model. Based on the acquired results, it was shown that the increase of the SBS copolymer content in asphalt binder precipitates the relaxation process, while aging slows down this phenomenon. It has also been proven that with increased content of SBS elastomer in asphalt binder, the effect of short-term aging on binder’s stress relaxation ability at low temperatures is reduced.


2015 ◽  
Vol 747 ◽  
pp. 238-241
Author(s):  
Wan Adilah Ismail ◽  
Intan Rohani Endut ◽  
Sit Zaharah Ishak

Sustainable asphalt pavement is important in decreasing material costs by improving the existing material such as modified asphalt binders. It is also needed to provide a quality riding for road users. In achieving quality riding, the material selection and mix design must be correctly examined before using in pavement construction. Then, the aims of this study are to determine suitability of material selected by examining the aggregate properties and modified asphalt binder. In modified asphalt binder, 6% of polyacrylate polymer was added as an additive in 500g of binder content to dissolve. It was checked through Superpave gyratory compactor in determining air voids samples in term of height after compacted. The samples were mixed with different percentages of binder content; 5%, 5.5%, 6% and 6.5% to produce control and polyacrylate modified samples. 8 gyratory for Ninitialand 100 gyratory for Ndesignwere used in compaction of samples to determine air voids in term of height. The results show that 5.5% of binder content of polyacrylate modified samples has lower air voids compare than control samples. Thus, modified binders are able to minimize binder usage and save natural sources and also cost by improving bonding between mixtures to prevent pavement failure


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 92 ◽  
Author(s):  
Fusong Wang ◽  
Lei Zhang ◽  
Xiaoshan Zhang ◽  
Hechuan Li ◽  
Shaopeng Wu

The styrene–butadiene–styrene (SBS)-modified asphalt pavement has been in growing demand in the road construction field owing to its workable mechanical property and temperature durability. This paper prepared a penetrative rejuvenator (PR) with waste cooking oil (WCO) and emulsified asphalt, then applied PR on SBS copolymers to investigate its aging and rejuvenating effects in an asphalt binder. After a thin film oven test (TFOT) and ultraviolet (UV) aging of SBS copolymers, Fourier transform infrared (FTIR) spectra were used to analyse the aged copolymers’ chemical structure. Moreover, both aged and rejuvenated SBS copolymers were added into a fresh asphalt binder to get two kinds of modified asphalt binders, namely, MAAC (modified by aged copolymer) and MARC (modified by rejuvenated copolymer). Aiming to analyse the monomer effect of SBS copolymers in the asphalt binder, the rheological characteristic with dynamic shear rheometer (DSR), chemical structure with FTIR and physical properties with penetration, soft point and ductility tests were investigated using MAAC and MAAC samples. The results showed that rejuvenated SBS copolymer could improve MAAC’s viscoelasticity, but from FTIR spectral analysis, PR resulted in no chemical changes to SBS copolymers. A tough coat which made MAAC of higher stiffness was observed on the copolymer surface after thermal treatment. UV caused evidently negative effects on SBS copolymer because of accelerating oxidation by ozone, which brought about high possibility of cracks during servicing periods of asphalt pavement. In addition, MAAC was inferior in both rheological and physical properties, which reflected the significance and necessity in consideration of alleviating SBS copolymer aging in field.


2020 ◽  
Vol 6 (5) ◽  
pp. 1017-1030
Author(s):  
Maria Iqbal ◽  
Arshad Hussain ◽  
Afaq Khattak ◽  
Kamran Ahmad

With the increase in demand of flexible pavements, due to their various advantages over rigid pavements, there is a need to improve the aging properties of the bitumen in order to enhance its resistance against different types of distresses such as rutting, fatigue cracking. This research focus on the use of one polymeric additive Polyethylene (PE) and one non polymeric additive Sulphur (S) to enhance the aging resistance of asphalt. These modifiers are evaluated for their effect on the aging mechanism in comparison with the unmodified bitumen. Aging of the original and modified bitumen is realized by the Rolling Thin Film Oven (RTFO) and Pressure Aging Vessel (PAV). Physical properties of the aged and unaged asphalt binders are evaluated through empirical testing like penetration, ductility and softening point test. Optimum content of the modifiers is obtained by comparing the results of conventional properties before and after aging. Fourier Transformed Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) are performed to bring out the chemical and morphological changes in the modified binder. Rheological properties of modified asphalt are evaluated with the help of a Dynamic Shear Rheometer (DSR). Results indicate improvement in physical properties of the modified asphalt even after the aging. Penetration index increased which shows less temperature susceptibility of the modified binders. Carbonyl and sulfoxide index are used as aging indicators which shows reduction in case of modified samples. Decrease in the sulfoxide and carbonyl index indicates better oxidation resistance of the modified samples. Morphological analysis proves good compatibility of the modifiers with asphalt binders. DSR results indicate improved viscoelastic properties of the modified binders. Hence it can be concluded that Polyethylene and Sulphur are good options to improve the aging resistance of asphalt in terms of their cost effectiveness and environment friendly nature.


2021 ◽  
Vol 13 (12) ◽  
pp. 6634
Author(s):  
Hayder Al Hawesah ◽  
Monower Sadique ◽  
Clare Harris ◽  
Hassan Al Nageim ◽  
Karl Stopp ◽  
...  

Hot mix asphalt has various benefits such as good workability and durability. It is one of the most general materials used as asphalt mixtures in road pavements. Asphalt mixtures and binders can be improved by modifying them with various additives. Gilsonite is a natural asphalt hydrocarbon which may be used as an additive to hot mix asphalt. It is used as an asphalt binder modifier (wet process) and an asphalt mixture modifier (dry process) to improve the properties of the mix. It provides the option of improved rheological properties, stability, strength rutting resistance and moisture sensitivity. This paper examines the current research relating to the use of gilsonite to improve the asphalt properties (binder and mixture). The rheological properties of the modified asphalt binders and mechanical properties of the modified asphalt mixtures will be reviewed. The influence of adding gilsonite individually or combined with other additives will be discussed. Furthermore, assessment of the environmental and economic perspectives of the studied asphalt along with some suggestions to improve the asphalt binders and mixtures will be explored.


2011 ◽  
Vol 467-469 ◽  
pp. 1541-1545 ◽  
Author(s):  
Tian Gui Liu ◽  
Shao Peng Wu ◽  
Jun Han

Montmorillonite(MMT)is a typical layered silicate. It has been widely used to modify polymers. It improves the thermal, mechanical and aging properties of polymers. The prominent features of MMT modified asphalt concrete are significant for prolonging the service life of asphalt pavement. The profound researches on the service performance and mechanical characteristics of MMT modified asphalt binder and mixtures are important for the application of MMT modified asphalt concrete in practice projects. The effect of MMT on the creep properties of asphalt mixture has been investigated in the research. The result showed that the physical capabilities of MMT modified bitumen was improved evidently. UTM 25 electro-hydraulic servo-universal testing machine was used to do Creep Text, and proper rheological models are employed to describe such characteristics. Results indicated that the visco-elastic properties of the mixtures can be changed by the use of MMT. The revised Burgers model is suitable for the visco-elastic property research of MMT modified asphalt mixtures. The model demonstrated that the retardant visco-elastic property and viscous property of asphalt mixtures containing MMT can be improved, which result in the enhancement of resistance to permanent deformation for MMT modified asphalt mixtures.


2018 ◽  
Vol 163 ◽  
pp. 05012
Author(s):  
Amal Abdelaziz ◽  
Chun-Hsing Ho ◽  
Matthew Snyder

Low temperature cracking is one of the most common distress types in asphalt concrete pavements, particularly in cold regions. Many factors influence the behaviour of asphalt concrete pavements at low temperatures, such as the applied traffic load, environmental conditions and material characteristics. Asphalt binders are one of the primary factors that influence material properties. The purpose of this study is to compare the performance of two types of asphalt binders: styrene-butadiene-styrene (SBS) modified asphalt binder and unmodified asphalt binder in resisting low temperature cracking. The study was conducted in Flagstaff, located at the area of Northern Arizona, in the United States. Asphalt samples were collected from the paving sections and were compacted and trimmed into small beams. Bending Beam Rheometer tests were performed, using the trimmed specimens at temperatures of -6°C, -12°C and -18°C. Based on the results of the study, it was concluded that, SBS modified asphalt binder performs better in resisting low temperature cracking, compared to the unmodified binder. Based on the study outcomes, it is recommended to use SBS polymer modified polymers in areas subjected to severe cold weather events to maximize the life span of asphalt concrete pavements.


Sign in / Sign up

Export Citation Format

Share Document