scholarly journals Investigation of the Effect of using Salak Seeds as Coarse Aggregate in Concrete

2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Andi Sulfanita ◽  
Gufran Darma Dirawan ◽  
Muhammad Ichsan Ali

This study described the effect of using salak seed waste as a substitute for coarse aggregate. The percentage of salak seed in concrete mixture became experimental variable to discover the best compressive strength of concrete. Quantitative study with experimental study was carried out at the Laboratory of Materials and Concrete, Faculty of Engineering, University. The design of experiment used a designed compressive strength of concrete of 20 Mpa. The experiment consisted of five variations in the percentage of salak seeds, namely 0%, 5%, 10%, 15%, and 20%. The slump test is carried out immediately after mixing the concrete in each proportion. Furthermore, 20 pieces of cylindrical concrete samples in each treatment were tested for 7,14,21 and 28 days. This method aims to compare the strength of each of the resulting concrete compositions. The results obtained showed that the use of salak seeds with a percentage of 5% and 10% gave a compressive strength value of 28 days which met the standard compressive strength of the design female. Meanwhile, the percentage of salak seeds 15% and 20% did not produce the planned compressive strength value. Therefore, salak seeds are suitable to be used as a substitute for coarse aggregate with a percentage of less than 10%. The higher the substitution of the mixture in the salak seed concrete, the lower the compressive strength of the concrete. The results of this study can be developed in green concrete studies that use waste.

2015 ◽  
Vol 754-755 ◽  
pp. 348-353 ◽  
Author(s):  
Norlia Mohamad Ibrahim ◽  
Leong Qi Wen ◽  
Mustaqqim Abdul Rahim ◽  
Khairul Nizar Ismail ◽  
Roshazita Che Amat ◽  
...  

Compressive strength of concrete is the major mechanical properties of concrete that need to be focused on. Poor compressive strength will lead to low susceptibility of concrete structure towards designated actions. Many researches have been conducted to enhance the compressive strength of concrete by incorporating new materials in the concrete mixture. The dependencies towards natural resources can be reduced. Therefore, this paper presents the results of an experimental study concerning the incorporation of artificial lightweight bubbles aggregate (LBA) into cementations mixture in order to produce comparable compressive strength but at a lower densities. Three concrete mixtures containing various percentages of LBA, (10% - 50% of LBA) and one mixture used normal aggregate (NA) were prepared and characterized. The compressive strength of LBA in concrete was identified to be ranged between 39 MPa and 54 MPa. Meanwhile, the densities vary between 2000 kg/m3 to 2300 kg/m3.


2021 ◽  
Vol 328 ◽  
pp. 10006
Author(s):  
Daud Andang Pasalli ◽  
Dina Limbong Pamuttu ◽  
Rahmat Fajar Septiono ◽  
Chitra Utary ◽  
Hairulla Hairulla

The use of lightweight concrete materials in Indonesia, especially in the Merauke Regency area can be an alternative amid the rapid development of the housing sector. In this experimental study, the author took the initiative to replace coarse aggregate with wood charcoal as light coarse aggregate. The purpose of this study was to determine the value of compressive strength and to determine whether the wood charcoal material met the standard of lightweight concrete coarse aggregate. Planning the proportion of lightweight concrete mixture in this study using a volume ratio between cement, sand and wood charcoal of 1: 2, 1: 2: 2.5 and 1: 2: 5 with variations of test days at 3, 7, 14, 21 and 28 day. From the results of the compressive strength test of lightweight concrete, the use of wood charcoal aggregate as coarse aggregate in concrete causes the value of the compressive strength of concrete to decrease.


2013 ◽  
Vol 857 ◽  
pp. 42-50
Author(s):  
Hai Peng Gao ◽  
Bo Tian ◽  
Zi Yi Hou

Combining with the concrete mixing process of twin-shaft mixer, this paper studied the gap-graded concrete mixing uniformity variation under different time. The study found that: under different mixing time, the relative error of coarse aggregate weight in per unit volume decreases, the compressive strength of concrete specimens change from increase to decrease, and they respectively reach the minimum and maximum at 40s, according to this, we get to optimum stirring time is 30~40s; Torque can reflect the condition of concrete mixing to a certain extent, but when the torque becomes stable, it does not stand for the uniformity of concrete mixing, keep stirring about 8s, the concrete mixing will be uniform completely.


2019 ◽  
Vol 5 (2) ◽  
pp. 107
Author(s):  
Decka Chaniago Sukanli ◽  
Priyanto Saelan

ABSTRAKDalam campuran beton, agregat kasar memiliki 70% sampai 80% pengaruh terhadap kuat tekan beton. Agregat kasar memiliki bentuk yang berbeda seperti membulat, pipih, dan memanjang tergantung pada sumbernya. Dalam penelitian ini, dilakukan penyelidikan pada kadar maksimum bentuk pipih dan memanjang agregat kasar dalam campuran beton. Pada penelitian kadar bentuk pipih dan memanjang agregat kasar ini menggunakan benda uji silinder dengan ukuran diameter 10 cm dan tinggi 20 cm. Pengujian dilakukan dengan uji slump dan uji kuat tekan beton yang mengacu pada SNI. Slump rencana yang digunakan yaitu (30-60) mm dan (60-180) mm dengan kuat tekan beton rencana yaitu 30 MPa usia 28 hari. Hasil pengujian ini dapat diketahui bahwa kadar pipih dan memanjang agregat kasar melebihi 20% tidak berpengaruh terhadap kuat tekan beton selama kadar pipih dan memanjang agregat kasar tidak melebihi 45% dari total agregat batu pecah.Kata kunci: bentuk pipih dan memanjang, agregat kasar, kuat tekan beton, uji slump ABSTRACTIn concrete mixture, coarse aggregate has 70% to 80% influence on concrete compressive strength. The coarse aggregate have different shape like rounded, angular, flaky and elongated depending on the source. In this study, we investigated the maximum level of flat and elongated coarse aggregate in concrete mixture. In the study of the level of flat and elongated forms coarse aggregates using cylindrical specimen with a diameter of 10 cm and a height of 20 cm. Testing was conducted with slump and concrete compressive strength test which refers to SNI. The slump plan used is (30-60) mm and (60-180) mm with a 30 MPa concrete compressive strength of 28 days. The results of this test can be seen that the flat and elongated of coarse aggregates exceeding 20% does not effect compressive strength of the concrete as long as the flat and elongated of coarse aggregates not exceed at 45% of the total aggregates.Keywords: flat and elongated shape, coarse aggregates, compressive strength, slump test


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


2008 ◽  
Vol 385-387 ◽  
pp. 381-384 ◽  
Author(s):  
Wei Wang ◽  
Hua Ling ◽  
Xiao Ni Wang ◽  
Tian Xia ◽  
Da Zhi Wang ◽  
...  

With the increase in the use of recycled aggregate concrete (RAC), it is necessary to clearly understand its behavior and characteristics. In this paper, experimental study on compressive strength of RAC with same water/cement ratio is conducted. Firstly, influence of recycled coarse aggregate contents on cube compressive strength of RAC is studied. Secondly, experiment on time-dependent strength developing process of RAC is conducted with different solidification ages. Finally, based on above experimental investigations, empirical formula for compress strengths of RAC with different ages is presented. The result of this paper is helpful to theoretical analysis and practical engineering design of RAC structures.


Author(s):  
A.O Adeyemi ◽  
M.A Anifowose ◽  
I.O Amototo ◽  
S.A Adebara ◽  
M.Y Olawuyi

This study examined the effect of varying water cement ratio on the compressive strength of concrete produced using palm kernel shell (PKS) as coarse aggregate at different replacement levels. The replacement levels of coarse aggregate with palm kernel shells (PKS) were 0%, 25%, 50%, and 100% respectively. PKS concrete cubes (144 specimens) of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14, 21 and 28 days respectively. A mix ratio of 1:2:4 was adopted with water-cement ratio of 0.45, 0.5, and 0.6 respectively while the batching was done by weight. Slump test was conducted on fresh concrete while compressive strength test was carried out on the hardened concrete cubes using a compression testing machine of 2000kN capacity. The result of tests on fresh concrete shows that the slump height of 0.45 water cement ratio (w/c) increases with an increase in PKS%. This trend was similar to 0.50 and 0.60 w/c. However, the compressive strength of concrete cube decreases with an increase in w/c (from 0.45 to 0.60) but increases with respect to curing age and also decreases with increase in PKS%. Concrete with 0.45 water-cement ratio possess the highest compressive strength. It was observed that PKS is not a good substitute for coarse aggregate in mix ratio 1:2:4 for concrete productions. Hence, the study suggest the use of chemical admixture such as superplasticizer or calcium chloride in order to improve the strength of palm kernel shells-concrete.


Sign in / Sign up

Export Citation Format

Share Document