scholarly journals An Empirical Model For Validity And Verification Of Ai Behavior: Overcoming Ai Hazards In Neural Networks

2021 ◽  
Vol 21 ◽  
pp. 44-52
Author(s):  
Ayse K Arslan

Rapid progress in machine learning and artificial intelligence (AI) has brought increasing attention to the potential impacts of AI technologies on society. This paper discusses hazards in machine learning systems, defined as unintended and harmful behavior that may emerge from poor design of real-world AI systems with a particular focus on ANN. The paper provides a review of previous work in these areas as well as suggesting research directions with a focus on relevance to cutting-edge AI systems with a focus on neural networks. Finally, the paper considers the high-level question of how to think most productively about the safety of forward-looking applications of AI.

Author(s):  
Seyed Omid Mohammadi ◽  
Ahmad Kalhor

The rapid progress of computer vision, machine learning, and artificial intelligence combined with the current growing urge for online shopping systems opened an excellent opportunity for the fashion industry. As a result, many studies worldwide are dedicated to modern fashion-related applications such as virtual try-on and fashion synthesis. However, the accelerated evolution speed of the field makes it hard to track these many research branches in a structured framework. This paper presents an overview of the matter, categorizing 110 relevant articles into multiple sub-categories and varieties of these tasks. An easy-to-use yet informative tabular format is used for this purpose. Such hierarchical application-based multi-label classification of studies increases the visibility of current research, promotes the field, provides research directions, and facilitates access to related studies.


2021 ◽  
Vol 54 (4) ◽  
pp. 1-16
Author(s):  
Abdus Salam ◽  
Rolf Schwitter ◽  
Mehmet A. Orgun

This survey provides an overview of rule learning systems that can learn the structure of probabilistic rules for uncertain domains. These systems are very useful in such domains because they can be trained with a small amount of positive and negative examples, use declarative representations of background knowledge, and combine efficient high-level reasoning with the probability theory. The output of these systems are probabilistic rules that are easy to understand by humans, since the conditions for consequences lead to predictions that become transparent and interpretable. This survey focuses on representational approaches and system architectures, and suggests future research directions.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 18
Author(s):  
Pantelis Linardatos ◽  
Vasilis Papastefanopoulos ◽  
Sotiris Kotsiantis

Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning such systems into “black box” approaches and causing uncertainty regarding the way they operate and, ultimately, the way that they come to decisions. This ambiguity has made it problematic for machine learning systems to be adopted in sensitive yet critical domains, where their value could be immense, such as healthcare. As a result, scientific interest in the field of Explainable Artificial Intelligence (XAI), a field that is concerned with the development of new methods that explain and interpret machine learning models, has been tremendously reignited over recent years. This study focuses on machine learning interpretability methods; more specifically, a literature review and taxonomy of these methods are presented, as well as links to their programming implementations, in the hope that this survey would serve as a reference point for both theorists and practitioners.


Author(s):  
Wael H. Awad ◽  
Bruce N. Janson

Three different modeling approaches were applied to explain truck accidents at interchanges in Washington State during a 27-month period. Three models were developed for each ramp type including linear regression, neural networks, and a hybrid system using fuzzy logic and neural networks. The study showed that linear regression was able to predict accident frequencies that fell within one standard deviation from the overall mean of the dependent variable. However, the coefficient of determination was very low in all cases. The other two artificial intelligence (AI) approaches showed a high level of performance in identifying different patterns of accidents in the training data and presented a better fit when compared to the regression model. However, the ability of these AI models to predict test data that were not included in the training process showed unsatisfactory results.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lara Lloret Iglesias ◽  
Pablo Sanz Bellón ◽  
Amaia Pérez del Barrio ◽  
Pablo Menéndez Fernández-Miranda ◽  
David Rodríguez González ◽  
...  

AbstractDeep learning is nowadays at the forefront of artificial intelligence. More precisely, the use of convolutional neural networks has drastically improved the learning capabilities of computer vision applications, being able to directly consider raw data without any prior feature extraction. Advanced methods in the machine learning field, such as adaptive momentum algorithms or dropout regularization, have dramatically improved the convolutional neural networks predicting ability, outperforming that of conventional fully connected neural networks. This work summarizes, in an intended didactic way, the main aspects of these cutting-edge techniques from a medical imaging perspective.


2020 ◽  
pp. 57-63
Author(s):  
admin admin ◽  
◽  
◽  
◽  
◽  
...  

The human facial emotions recognition has attracted interest in the field of Artificial Intelligence. The emotions on a human face depicts what’s going on inside the mind. Facial expression recognition is the part of Facial recognition which is gaining more importance and need for it increases tremendously. Though there are methods to identify expressions using machine learning and Artificial Intelligence techniques, this work attempts to use convolution neural networks to recognize expressions and classify the expressions into 6 emotions categories. Various datasets are investigated and explored for training expression recognition models are explained in this paper and the models which are used in this paper are VGG 19 and RESSNET 18. We included facial emotional recognition with gender identification also. In this project we have used fer2013 and ck+ dataset and ultimately achieved 73% and 94% around accuracies respectively.


2020 ◽  
Vol 25 (2) ◽  
pp. 7-13
Author(s):  
Zhangozha A.R. ◽  

On the example of the online game Akinator, the basic principles on which programs of this type are built are considered. Effective technics have been proposed by which artificial intelligence systems can build logical inferences that allow to identify an unknown subject from its description (predicate). To confirm the considered hypotheses, the terminological analysis of definition of the program "Akinator" offered by the author is carried out. Starting from the assumptions given by the author's definition, the article complements their definitions presented by other researchers and analyzes their constituent theses. Finally, some proposals are made for the next steps in improving the program. The Akinator program, at one time, became one of the most famous online games using artificial intelligence. And although this was not directly stated, it was clear to the experts in the field of artificial intelligence that the program uses the techniques of expert systems and is built on inference rules. At the moment, expert systems have lost their positions in comparison with the direction of neural networks in the field of artificial intelligence, however, in the case considered in the article, we are talking about techniques using both directions – hybrid systems. Games for filling semantics interact with the user, expanding their semantic base (knowledge base) and use certain strategies to achieve the best result. The playful form of such semantics filling programs is beneficial for researchers by involving a large number of players. The article examines the techniques used by the Akinator program, and also suggests possible modifications to it in the future. This study, first of all, focuses on how the knowledge base of the Akinator program is built, it consists of incomplete sets, which can be filled and adjusted as a result of further iterations of the program launches. It is important to note our assumption that the order of questions used by the program during the game plays a key role, because it determines its strategy. It was identified that the program is guided by the principles of nonmonotonic logic – the assumptions constructed by the program are not final and can be rejected by it during the game. The three main approaches to acquisite semantics proposed by Jakub Šimko and Mária Bieliková are considered, namely, expert work, crowdsourcing and machine learning. Paying attention to machine learning, the Akinator program using machine learning to build an effective strategy in the game presents a class of hybrid systems that combine the principles of two main areas in artificial intelligence programs – expert systems and neural networks.


2021 ◽  
Author(s):  
Ramy Abdallah ◽  
Clare E. Bond ◽  
Robert W.H. Butler

<p>Machine learning is being presented as a new solution for a wide range of geoscience problems. Primarily machine learning has been used for 3D seismic data processing, seismic facies analysis and well log data correlation. The rapid development in technology with open-source artificial intelligence libraries and the accessibility of affordable computer graphics processing units (GPU) makes the application of machine learning in geosciences increasingly tractable. However, the application of artificial intelligence in structural interpretation workflows of subsurface datasets is still ambiguous. This study aims to use machine learning techniques to classify images of folds and fold-thrust structures. Here we show that convolutional neural networks (CNNs) as supervised deep learning techniques provide excellent algorithms to discriminate between geological image datasets. Four different datasets of images have been used to train and test the machine learning models. These four datasets are a seismic character dataset with five classes (faults, folds, salt, flat layers and basement), folds types with three classes (buckle, chevron and conjugate), fault types with three classes (normal, reverse and thrust) and fold-thrust geometries with three classes (fault bend fold, fault propagation fold and detachment fold). These image datasets are used to investigate three machine learning models. One Feedforward linear neural network model and two convolutional neural networks models (Convolution 2d layer transforms sequential model and Residual block model (ResNet with 9, 34, and 50 layers)). Validation and testing datasets forms a critical part of testing the model’s performance accuracy. The ResNet model records the highest performance accuracy score, of the machine learning models tested. Our CNN image classification model analysis provides a framework for applying machine learning to increase structural interpretation efficiency, and shows that CNN classification models can be applied effectively to geoscience problems. The study provides a starting point to apply unsupervised machine learning approaches to sub-surface structural interpretation workflows.</p>


2021 ◽  
Author(s):  
Ambarish Shashank Gadgil ◽  
Aditya Fakirmohan Desity ◽  
Prasanna Hemant Asole ◽  
Harsh Shailesh Dandge ◽  
Spurti Shinde

Author(s):  
Dirk Beerbaum ◽  
Julia Margarete Puaschunder

Technological improvement in the age of information has increased the possibilities to control the innocent social media users or penalize private investors and reap the benefits of their existence in hidden persuasion and discrimination. This chapter takes as a case the transparency technology XBRL (eXtensible Business Reporting Language), which should make data more accessible as well as usable for private investors. Considering theoretical literature and field research, a representation issue for principles-based accounting taxonomies exists, which intelligent machines applying artificial intelligence (AI) nudge to facilitate decision usefulness. This chapter conceptualizes ethical questions arising from the taxonomy engineering based on machine learning systems and advocates for a democratization of information, education, and transparency about nudges and coding rules.


Sign in / Sign up

Export Citation Format

Share Document