Comparison of two glucose-monitoring systems for use in horses

Author(s):  
Caitlin E. Malik ◽  
David M. Wong ◽  
Katarzyna A. Dembek ◽  
Katherine E. Wilson

Abstract OBJECTIVE To determine the accuracy of 2 interstitial glucose-monitoring systems (GMSs) for use in horses compared with a point-of-care (POC) glucometer and standard laboratory enzymatic chemistry method (CHEM). ANIMALS 8 clinically normal adult horses. PROCEDURES One of each GMS device (Dexcom G6 and Freestyle Libre 14-day) was placed on each horse, and blood glucose concentration was measured via POC and CHEM at 33 time points and compared with simultaneous GMS readings. An oral glucose absorption test (OGAT) was performed on day 2, and glucose concentrations were measured and compared. RESULTS Glucose concentrations were significantly correlated with one another between all devices on days 1 to 5. Acceptable agreement was observed between Dexcom G6 and Freestyle Libre 14-day when compared with CHEM on days 1, 3, 4, and 5 with a combined mean bias of 10.45 mg/dL and 1.53 mg/dL, respectively. During dextrose-induced hyperglycemia on day 2, mean bias values for Dexcom G6 (10.49 mg/dL) and FreeStyle Libre 14-day (0.34 mg/dL) showed good agreement with CHEM. CLINICAL RELEVANCE Serial blood glucose measurements are used to diagnose or monitor a variety of conditions in equine medicine; advances in near-continuous interstitial glucose monitoring allow for minimally invasive glucose assessment, thereby reducing stress and discomfort to patients. Data from this study support the use of the Dexcom G6 and Freestyle Libre 14-day interstitial glucose-monitoring systems to estimate blood glucose concentrations in horses.

Author(s):  
John C. Pickup

Blood glucose concentrations are measured in diabetes to detect hyper- and hypo-glycaemia. Health care professionals need this information to diagnose diabetes, or states of impaired glucose tolerance, to adjust therapy and correct hyper- and hypo-glycaemia in established diabetes, to interpret signs and symptoms in patients (e.g. is confusion due to hypoglycaemia or another cause?), and to assess the risk of tissue complications developing in the future (the severity and duration of hyperglycaemia is clearly related to microvascular disease). The patient with diabetes measures blood glucose concentrations to take corrective action with food and insulin, to maintain good control, to check the safety of everyday activities (e.g. not driving when hypoglycaemic), to assess the impact of events and lifestyle and on control (exercise, diet, illness, psychological stress), and to ensure a good quality of life and the ‘peace of mind’ that knowledge of the blood glucose concentration gives. Glucose monitoring has traditionally been performed by intermittent sampling of blood glucose concentrations, either in hospital or by the patient testing their own blood glucose concentrations at home using finger-prick capillary blood samples applied to reagent strips and inserted into portable glucose meters – self-monitoring of blood glucose (SMBG). In addition, in the last decade or so, continuous glucose monitoring (CGM) has entered clinical practice as a supplement to SMBG, albeit with limited uptake at present. CGM is based on the implantation of needle-type glucose sensors, or microdialysis probes, into the subcutaneous tissue for measurement of interstitial glucose concentrations.


2019 ◽  
Vol 104 (11) ◽  
pp. 5217-5224 ◽  
Author(s):  
Saeed Reza Toghi-Eshghi ◽  
Jane E Yardley

Abstract Objective To determine the effect of morning exercise in the fasting condition vs afternoon exercise on blood glucose responses to resistance exercise (RE). Research Design and Methods For this randomized crossover design, 12 participants with type 1 diabetes mellitus [nine females; aged 31 ± 8.9 years; diabetes duration, 19.1 ± 8.3 years; HbA1c, 7.4% ± 0.8% (57.4 ± 8.5 mmol/mol)] performed ∼40 minutes of RE (three sets of eight repetitions, seven exercises, at the individual’s predetermined eight repetition maximum) at either 7 am (fasting) or 5 pm. Sessions were performed at least 48 hours apart. Venous blood samples were collected immediately preexercise, immediately postexercise, and 60 minutes postexercise. Interstitial glucose was monitored overnight postexercise by continuous glucose monitoring (CGM). Results Data are presented as mean ± SD. Blood glucose rose during fasting morning exercise (9.5 ± 3.0 to 10.4 ± 3.0 mmol/L), whereas it declined with afternoon exercise (8.2 ± 2.5 to 7.4 ± 2.6 mmol/L; P = 0.031 for time-by-treatment interaction). Sixty minutes postexercise, blood glucose concentration was significantly higher after fasting morning exercise than after afternoon exercise (10.9 ± 3.2 vs 7.9 ± 2.9 mmol/L; P = 0.019). CGM data indicated more glucose variability (2.7 ± 1.1 vs 2.0 ± 0.7 mmol/L; P = 0.019) and more frequent hyperglycemia (12 events vs five events; P = 0.025) after morning RE than after afternoon RE. Conclusions Compared with afternoon RE, morning (fasting) RE was associated with distinctly different blood glucose responses and postexercise profiles.


2016 ◽  
Vol 11 (2) ◽  
pp. 296-298 ◽  
Author(s):  
Norbert Hermanns ◽  
Dominic Ehrmann ◽  
Bernhard Kulzer

This analytical comment discusses what standards are needed for the evaluation of the accuracy of glucose measurement systems continuously measuring glucose in the interstitial fluid. Since accuracy standards for continuous glucose monitoring (CGM)/flash glucose monitoring (FGM) systems are currently based on modeling studies or consensus of experts, we raised the question whether non-inferiority trials evaluating the safety and efficacy of CGM/FGM measurements compared to capillary blood glucose measurement with point-of-care devices could help to establish clarity about the needed accuracy standards of CGM/FGM. Such trials could also support the replacement of capillary blood glucose measurements by modern CGM/FGM systems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247561
Author(s):  
Valentina Vitale ◽  
Lise C. Berg ◽  
Bettina Birch Larsen ◽  
Andrea Hannesdottir ◽  
Preben Dybdahl Thomsen ◽  
...  

This pilot prospective study reports the feasibility, management and cost of the use of a continuous glucose monitoring (CGM) system in critically ill adult horses and foals. We compared the glucose measurements obtained by the CGM device with blood glucose (BG) concentrations. Neonatal foals (0–2 weeks of age) and adult horses (> 1 year old) admitted in the period of March-May 2016 with clinical and laboratory parameters compatible with systemic inflammatory response syndrome (SIRS) were included. Glucose concentration was monitored every 4 hours on blood samples with a point-of-care (POC) glucometer and with a blood gas analyzer. A CGM system was also placed on six adults and four foals but recordings were successfully obtained only in four adults and one foal. Glucose concentrations corresponded fairly well between BG and CGM, however, there appeared to be a lag time for interstitial glucose levels. Fluctuations of glucose in the interstitial fluid did not always follow the same trend as BG. CGM identified peaks and drops that would have been missed with conventional glucose monitoring. The use of CGM system is feasible in ill horses and may provide clinically relevant information on glucose levels, but there are several challenges that need to be resolved for the system to gain more widespread usability.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ting Shi ◽  
Dachao Li ◽  
Guoqing Li ◽  
Yiming Zhang ◽  
Kexin Xu ◽  
...  

One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF.


2021 ◽  
pp. 193229682110182
Author(s):  
Aaron P. Tucker ◽  
Arthur G. Erdman ◽  
Pamela J. Schreiner ◽  
Sisi Ma ◽  
Lisa S. Chow

Successful measurements of interstitial glucose are a key component in providing effective care for patients with diabetes. Recently, there has been significant interest in using neural networks to forecast future glucose values from interstitial measurements collected by continuous glucose monitors (CGMs). While prediction accuracy continues to improve, in this work we investigated the effect of physiological sensor location on neural network blood glucose forecasting. We used clinical data from patients with Type 2 Diabetes who wore blinded FreeStyle Libre Pro CGMs (Abbott) on both their right and left arms continuously for 12 weeks. We trained patient-specific prediction algorithms to test the effect of sensor location on neural network forecasting ( N = 13, Female = 6, Male = 7). In 10 of our 13 patients, we found at least one significant ( P < .05) increase in forecasting error in algorithms which were tested with data taken from a different location than data which was used for training. These reported results were independent from other noticeable physiological differences between subjects (eg, height, age, weight, blood pressure) and independent from overall variance in the data. From these results we observe that CGM location can play a consequential role in neural network glucose prediction.


2021 ◽  
pp. 193229682110071
Author(s):  
Loukia Spanou ◽  
Konstantinos Makris

In this issue of Journal of Diabetes Science and Technology, Baumstark et al. evaluated the analytical performance of a bench-top laboratory glucose analyzer (SUPER-GL) intended for replacement for the YSI2300-STAT analyzer, that served for several decades as a comparator method in clinical and analytical studies of blood glucose monitoring systems (BGMS). The authors concluded that the SUPER-GL’s overall performance is comparable to that of YSI2300-STAT, and has the potential to be a candidate comparator analyzer. However, the question is if we need to recommend as a “comparator method,” a specific device, that measure glucose using the same analytical method with most BGMS. In this analysis we present our point of view hoping to generate a discussion on the necessity for such a replacement.


Author(s):  
Li-Nong Ji ◽  
Li-Xin Guo ◽  
Li-Bin Liu

AbstractBlood glucose self-monitoring by individuals with diabetes is essential in controlling blood glucose levels. The International Organization for Standardization (ISO) introduced new standards for blood glucose monitoring systems (BGMS) in 2013 (ISO 15197: 2013). The CONTOUR PLUSThis study evaluated the accuracy and precision of CONTOUR PLUS BGMS in quantitative glucose testing of capillary and venous whole blood samples obtained from 363 patients at three different hospitals.Results of fingertip and venous blood glucose measurements by the CONTOUR PLUS system were compared with laboratory reference values to determine accuracy. Accuracy was 98.1% (96.06%–99.22%) for fingertip blood tests and 98.1% (96.02%–99.21%) for venous blood tests. Precision was evaluated across a wide range of blood glucose values (5.1–17.2 mmol/L), testing three blood samples repeatedly 15 times with the CONTOUR PLUS blood glucose meter using test strips from three lots. All within-lot results met ISO criteria (i.e., SD<0.42 mmol/L for blood glucose concentration <5.55 mmol/L; CV<7.5% for blood glucose concentration ≥5.55 mmol/L). Between-lot variations were 1.5% for low blood glucose concentration, 2.4% for normal and 3.4% for high.Accuracy of both fingertip and venous blood glucose measurements by the CONTOUR PLUS system was >95%, confirming that the system meets ISO 15197: 2013 requirements.


2012 ◽  
Vol 6 (5) ◽  
pp. 1060-1075 ◽  
Author(s):  
Guido Freckmann ◽  
Christina Schmid ◽  
Annette Baumstark ◽  
Stefan Pleus ◽  
Manuela Link ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document