scholarly journals Role of Landfill Cover in Reducing Methane Emission

2013 ◽  
Vol 39 (3) ◽  
pp. 115-126 ◽  
Author(s):  
Yucheng Cao ◽  
Ewelina Staszewska

Abstract Uncontrolled emissions of landfill gas may contribute significantly to climate change, since its composition represents a high fraction of methane, a greenhouse gas with 100- year global warming potential 25 times that of carbon dioxide. Landfill cover could create favourable conditions for methanotrophy (microbial methane oxidation), an activity of using bacteria to oxidize methane to carbon dioxide. This paper presents a brief review of methanotrophic activities in landfill cover. Emphasis is given to the effects of cover materials, environmental conditions and landfill vegetation on the methane oxidation potential, and to their underlying effect mechanisms. Methanotrophs communities and methane oxidation kinetics are also discussed. Results from the overview suggest that well-engineered landfill cover can substantially increase its potential for reducing emissions of methane produced in landfill to the atmosphere.

2021 ◽  
Author(s):  
Deepika Pandey

The flow of water in rivers is of paramount importance to maintain supply of food and energy requirements to a great extent. The minimum flow in perennial rivers is subjected to groundwater availability, it is further replenished by the water added through precipitation. Climate change not only increases the melting of glaciers and sea level rise, but also influences the surface water flow and quality. As agriculture is directly affected by changing precipitation pattern, the reduction in water resources and untimely addition of water, both act havoc to the food production process. This interconnection makes agriculture even more vulnerable to the scenarios of global warming and climate change. Studies on food-energy-water nexus has opened new avenues of research in sustainable water management. The role of sustainable flow of water in rivers is highlighted which needs to be understood in era of climate change.


2021 ◽  
pp. 1-13
Author(s):  
Kehan Li

Climate change is of great importance in modern times and global warming is considered as a significant part of climate change. It is proved that human’s emissions such as greenhouse gases are one of the main sources of global warming (IPCC, 2018). Apart from greenhouse gases, there is another kind of matter being released in quantity via emissions from industries and transportations and playing an important role in global warming, which is aerosol. However, atmospheric aerosols have the net effect of cooling towards global warming. In this paper, climate change with respect to global warming is briefly introduced and the role of aerosols in the atmosphere is emphasized. Besides, properties of aerosols including dynamics and thermodynamics of aerosols as well as interactions with solar radiation are concluded. In the end, environmental policies and solutions are discussed. Keywords: Climate change, Global warming, Atmospheric aerosols, Particulate matter, Radiation, Environmental policy.


2020 ◽  
Vol 10 (6) ◽  
pp. 2014 ◽  
Author(s):  
Mariano Pierantozzi ◽  
Sebastiano Tomassetti ◽  
Giovanni Di Nicola

The most commonly used refrigerants are potent greenhouse gasses that can contribute to climate change. Hydro-Fluoro-Olefins are low Global Warming Potential fluids. A summary of our experimental research activity on the thermodynamic properties of two environmentally friendly Hydro-Fluoro-Olefins, namely R1234yf and R1234ze(E), is reported. In particular, the measurements were performed with an isochoric apparatus and the apparatus specifically built to reach temperatures down to about 100 K. The data elaboration confirms the validity of the choice and that R1234yf and R1234ze(E) can be adopted in many domestic applications. Moreover, considering the reduction of the flammability issues of R1234yf and R1234ze(E), the properties of binary systems containing these fluids and carbon dioxide were analyzed. The presented mixtures could be very interesting for low-temperature applications such as cascade cycles.


Climate Law ◽  
2018 ◽  
Vol 8 (3-4) ◽  
pp. 279-319
Author(s):  
Benjamin J. Richardson

Climate change has multifaceted aesthetic dimensions of legal significance. Global warming alters the aesthetic properties of nature, and further aesthetic changes are precipitated by climate mitigation and adaptation responses of impacted societies. The social and political struggles to influence climate change law are also influenced by aesthetics, as environmental activists and artists collaborate to influence public opinion, while conversely the business sector through its marketing and other aesthetic communications tries to persuade consumers of its climate-friendly practices to forestall serious action on global warming. This article distils and analyses these patterns in forging a novel account of the role of aesthetics in climate change law and policy, and it makes conclusions on how this field of law should consider aesthetic values through ‘curatorial’ guidance.


2011 ◽  
Vol 57 ◽  
pp. 435-462 ◽  
Author(s):  
Ian Nicholas McCave ◽  
Henry Elderfield

Nick Shackleton was an international scientist of great renown who fundamentally changed our understanding of how Earth processes work. His research on ancient oceans and climates was both innovative and pioneering, and he clarified the precise role of carbon dioxide in warming and cooling the Earth's climate. His work contributed greatly to our present understanding of the mechanism and causes of global warming. When he began his research, the investigation of past climatic changes was an area of ‘academic’ interest only. Four decades later, his lifetime achievements define the emergence of our understanding of the operation of Earth's natural climate system. This understanding of the past is now central to efforts to predict the future climate we have begun to create. As well as his many scientific accomplishments, Nick Shackleton excelled in another area, that of music, which was almost as important to him as science, and he was a very accomplished clarinet player. In his work he was spirited and curiosity-driven. He let his students and an entire community share in his brilliance and vision.


2008 ◽  
Vol 21 (23) ◽  
pp. 6141-6155 ◽  
Author(s):  
Graeme L. Stephens ◽  
Todd D. Ellis

Abstract This paper examines the controls on global precipitation that are evident in the transient experiments conducted using coupled climate models collected for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The change in precipitation, water vapor, clouds, and radiative heating of the atmosphere evident in the 1% increase in carbon dioxide until doubled (1pctto2x) scenario is examined. As noted in other studies, the ensemble-mean changes in water vapor as carbon dioxide is doubled occur at a rate similar to that predicted by the Clausius–Clapeyron relationship. The ratio of global changes in precipitation to global changes in water vapor offers some insight on how readily increased water vapor is converted into precipitation in modeled climate change. This ratio ɛ is introduced in this paper as a gross indicator of the global precipitation efficiency under global warming. The main findings of this paper are threefold. First, increases in the global precipitation track increase atmospheric radiative energy loss and the ratio of precipitation sensitivity to water vapor sensitivity is primarily determined by changes to this atmospheric column energy loss. A reference limit to this ratio is introduced as the rate at which the emission of radiation from the clear-sky atmosphere increases as water vapor increases. It is shown that the derived efficiency based on the simple ratio of precipitation to water vapor sensitivities of models in fact closely matches the sensitivity derived from simple energy balance arguments involving changes to water vapor emission alone. Second, although the rate of increase of clear-sky emission is the dominant factor in the change to the energy balance of the atmosphere, there are two important and offsetting processes that contribute to ɛ in the model simulations studied: One involves a negative feedback through cloud radiative heating that acts to reduce the efficiency; the other is the global reduction in sensible heating that counteracts the effects of the cloud feedback and increases the efficiency. These counteracting feedbacks only apply on the global scale. Third, the negative cloud radiative heating feedback occurs through reductions of cloud amount in the middle troposphere, defined as the layer between 680 and 440 hPa, and by slight global cloud decreases in the lower troposphere. These changes act in a manner to expose the warmer atmosphere below to high clouds, thus resulting in a net warming of the atmospheric column by clouds and a negative feedback on the precipitation.


2013 ◽  
Vol 13 (12) ◽  
pp. 6083-6089 ◽  
Author(s):  
Y. Xu ◽  
D. Zaelke ◽  
G. J. M. Velders ◽  
V. Ramanathan

Abstract. There is growing international interest in mitigating climate change during the early part of this century by reducing emissions of short-lived climate pollutants (SLCPs), in addition to reducing emissions of CO2. The SLCPs include methane (CH4), black carbon aerosols (BC), tropospheric ozone (O3) and hydrofluorocarbons (HFCs). Recent studies have estimated that by mitigating emissions of CH4, BC, and O3 using available technologies, about 0.5 to 0.6 °C warming can be avoided by mid-21st century. Here we show that avoiding production and use of high-GWP (global warming potential) HFCs by using technologically feasible low-GWP substitutes to meet the increasing global demand can avoid as much as another 0.5 °C warming by the end of the century. This combined mitigation of SLCPs would cut the cumulative warming since 2005 by 50% at 2050 and by 60% at 2100 from the CO2-only mitigation scenarios, significantly reducing the rate of warming and lowering the probability of exceeding the 2 °C warming threshold during this century.


2017 ◽  
Vol 4 (3) ◽  
pp. 205316801771760 ◽  
Author(s):  
Kyle L Saunders

Given the potential attitudinal and behavioral impact of Anthropogenic Global Warming (AGW) conspiracy beliefs, it is important to understand their causes and moderators. Here, two explanations for the variation in these beliefs are engaged: the first is the choice among elites to frame AGW using the phrase ‘global warming’ (GW) as opposed to ‘climate change’ (CC); the second is partisan motivated reasoning. A theory is then developed about the role of trust in moderating the impact of the two frames on AGW conspiracy beliefs. In the case of CC, which is perceived as less severe than GW (and is therefore less identity threatening among Republicans), it is hypothesized that trust will moderate hoax beliefs among Republicans. In the case of GW, where the implications of existence beliefs have policy consequences that are more unpleasant, motivated reasoning will ‘win out’, and trust will not moderate conspiracy endorsement among Republicans. The results from an original question framing experiment are consistent with the author’s hypotheses. Whilst trust is a welcome commodity to those looking to persuade citizens to support AGW-ameliorating policies, it is not a cure-all, especially in the face of elite partisan cues that edify pre-existing attitudes/identities and arouse a strong desire to engage in motivated reasoning.


Sign in / Sign up

Export Citation Format

Share Document