scholarly journals Correlation of Rheological Properties of Ferrofluid-Based Magnetorheological Fluids Using Some Dimensionless Numbers Defined in Magnetorheology

Author(s):  
Vălu Gheorghe-Orlando ◽  
Susan-Resiga Daniela

Abstract In this paper we investigated from rheological point of view some samples of ferrofluid-based magnetorheological fluids (FF-MRFs) with different volumic fractions of Fe microparticles, but with the same ferrofluid used as carrier liquid. We correlated the dimensionless flow curves, measured at different values of the magnetic field induction, using either Mason number or Casson number. It has been shown that in this approach, data sets measured under different conditions collapse on a single curve. This master curve is useful for controlling the concentration of Fe particles, so that the magnetic and magnetorheological properties of FF-MRF to be adapted to obtain high-performance applications.

2014 ◽  
Vol 7 (3) ◽  
pp. 3595-3645 ◽  
Author(s):  
M. Bavay ◽  
T. Egger

Abstract. Using numerical models which require large meteorological data sets is sometimes difficult and problems can often be traced back to the Input/Output functionality. Complex models are usually developed by the environmental sciences community with a focus on the core modelling issues. As a consequence, the I/O routines that are costly to properly implement are often error-prone, lacking flexibility and robustness. With the increasing use of such models in operational applications, this situation ceases to be simply uncomfortable and becomes a major issue. The MeteoIO library has been designed for the specific needs of numerical models that require meteorological data. The whole task of data preprocessing has been delegated to this library, namely retrieving, filtering and resampling the data if necessary as well as providing spatial interpolations and parametrizations. The focus has been to design an Application Programming Interface (API) that (i) provides a uniform interface to meteorological data in the models; (ii) hides the complexity of the processing taking place; and (iii) guarantees a robust behaviour in case of format errors, erroneous or missing data. Moreover, in an operational context, this error handling should avoid unnecessary interruptions in the simulation process. A strong emphasis has been put on simplicity and modularity in order to make it extremely easy to support new data formats or protocols and to allow contributors with diverse backgrounds to participate. This library can also be used in the context of High Performance Computing in a parallel environment. Finally, it is released under an Open Source license and is available at http://models.slf.ch/p/meteoio. This paper gives an overview of the MeteoIO library from the point of view of conceptual design, architecture, features and computational performance. A scientific evaluation of the produced results is not given here since the scientific algorithms that are used have already been published elsewhere.


1976 ◽  
Vol 15 (01) ◽  
pp. 36-42 ◽  
Author(s):  
J. Schlörer

From a statistical data bank containing only anonymous records, the records sometimes may be identified and then retrieved, as personal records, by on line dialogue. The risk mainly applies to statistical data sets representing populations, or samples with a high ratio n/N. On the other hand, access controls are unsatisfactory as a general means of protection for statistical data banks, which should be open to large user communities. A threat monitoring scheme is proposed, which will largely block the techniques for retrieval of complete records. If combined with additional measures (e.g., slight modifications of output), it may be expected to render, from a cost-benefit point of view, intrusion attempts by dialogue valueless, if not absolutely impossible. The bona fide user has to pay by some loss of information, but considerable flexibility in evaluation is retained. The proposal of controlled classification included in the scheme may also be useful for off line dialogue systems.


2019 ◽  
Author(s):  
Ketan Khare ◽  
Frederick R. Phelan Jr.

<a></a><a>Quantitative comparison of atomistic simulations with experiment for glass-forming materials is made difficult by the vast mismatch between computationally and experimentally accessible timescales. Recently, we presented results for an epoxy network showing that the computation of specific volume vs. temperature as a function of cooling rate in conjunction with the time–temperature superposition principle (TTSP) enables direct quantitative comparison of simulation with experiment. Here, we follow-up and present results for the translational dynamics of the same material over a temperature range from the rubbery to the glassy state. Using TTSP, we obtain results for translational dynamics out to 10<sup>9</sup> s in TTSP reduced time – a macroscopic timescale. Further, we show that the mean squared displacement (MSD) trends of the network atoms can be collapsed onto a master curve at a reference temperature. The computational master curve is compared with the experimental master curve of the creep compliance for the same network using literature data. We find that the temporal features of the two data sets can be quantitatively compared providing an integrated view relating molecular level dynamics to the macroscopic thermophysical measurement. The time-shift factors needed for the superposition also show excellent agreement with experiment further establishing the veracity of the approach</a>.


2002 ◽  
Vol 67 (11) ◽  
pp. 1596-1608 ◽  
Author(s):  
Josef Janča

The effect of miniaturization of the separation channel on the performance of thermal field-flow fractionation (TFFF) is substantiated theoretically. The experiments carried out under carefully chosen experimental conditions proved the high performance of the separation of polymers within an extended range of molar masses from relatively low up to ultrahigh-molar-mass (UHMM) samples. The new micro-TFFF allows to achieve high resolution when applying constant field force operation, it makes easy the programming of the temperature drop which is an advantageous operational mode from the point of view of the time of analysis, and it extends considerably the range of perfectly controlled temperature of the cold wall due to a substantial decrease in the heat energy flux compared with standard size channels.


2019 ◽  
Vol 4 (1) ◽  
pp. 697-711 ◽  
Author(s):  
Erika Quendler

AbstractTourism is vitally important to the Austrian economy. The number of tourist destinations, both farms and other forms of accommodation, in the different regions of Austria is considerably and constantly changing. This paper discusses the position of the ‘farm holiday’ compared to other forms of tourism. Understanding the resilience of farm holidays is especially important but empirical research on this matter remains limited. The term ‘farm holiday’ covers staying overnight on a farm that is actively engaged in agriculture and has a maximum of 10 guest beds. The results reported in this paper are based on an analysis of secondary data from 2000 and 2018 by looking at two types of indicator: (i) accommodation capacity (supply side) and (ii) attractiveness of a destination (demand side). The data sets cover Austria and its NUTS3 regions. The results show the evolution of farm holidays vis-à-vis other forms of tourist accommodation. In the form of a quadrant matrix they also show the relative position of farm holidays regionally. While putting into question the resilience of farm holidays, the data also reveals where farm holidays could act to expand this niche or learn and improve to effect a shift in their respective position relative to the market ‘leaders’. However, there is clearly a need to learn more about farm holidays within the local context. This paper contributes to our knowledge of farm holidays from a regional point of view and tries to elaborate on the need for further research.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


2013 ◽  
Vol 12 (6) ◽  
pp. 2858-2868 ◽  
Author(s):  
Nadin Neuhauser ◽  
Nagarjuna Nagaraj ◽  
Peter McHardy ◽  
Sara Zanivan ◽  
Richard Scheltema ◽  
...  

2021 ◽  
Vol 04 (1) ◽  
pp. 54-54
Author(s):  
V. R. Nigmatullin ◽  
◽  
I. R. Nigmatullin ◽  
R. G. Nigmatullin ◽  
A.M. Migranov ◽  
...  

Currently, to increase the efficiency of industrial production, high-performance and expensive technological equipment is increasingly used, in which the weakest link, from the point of view of efficiency and reliability, is the components and parts of heavily loaded tribo – couplings operating both at significantly different temperatures (conditionally under lighter conditions, the temperature difference can be 100-120 degrees) and climatic conditions (high humidity, the presence of abrasives and other chemical elements in the atmosphere). As the results of the analysis of the frequency of failures of friction units and, accordingly, the cost of their restoration reach 9-20 percent of the cost of all equipment, without taking into account significant losses of income (profit) of the enterprise from downtime. The solution of this problem is based on the study of the wear rate of friction units by the wear products accumulated in working oils, cooling lubricants, and greases. A digital equipment monitoring system (DSMT) has been developed and implemented, which includes dynamic recording of the number of wear products and oil temperature by original modern recording devices, followed by the technology of their processing and use. The system also includes methods for finding the necessary information in large data sets useful and necessary in theoretical and practical terms with a similar technique controlled by a digital monitoring system. The advantages of SMT are the ability to predict the reliability of the equipment; reduce production risks and significantly reduce inefficient costs.


2014 ◽  
Vol 32 (10) ◽  
pp. 1207-1216 ◽  
Author(s):  
P. Janhunen

Abstract. Plasma brake is a thin, negatively biased tether that has been proposed as an efficient concept for deorbiting satellites and debris objects from low Earth orbit. We simulate the interaction with the ionospheric plasma ram flow with the plasma-brake tether by a high-performance electrostatic particle in cell code to evaluate the thrust. The tether is assumed to be perpendicular to the flow. We perform runs for different tether voltage, magnetic-field orientation and plasma-ion mass. We show that a simple analytical thrust formula reproduces most of the simulation results well. The interaction with the tether and the plasma flow is laminar (i.e. smooth and not turbulent) when the magnetic field is perpendicular to the tether and the flow. If the magnetic field is parallel to the tether, the behaviour is unstable and thrust is reduced by a modest factor. The case in which the magnetic field is aligned with the flow can also be unstable, but does not result in notable thrust reduction. We also correct an error in an earlier reference. According to the simulations, the predicted thrust of the plasma brake is large enough to make the method promising for low-Earth-orbit (LEO) satellite deorbiting. As a numerical example, we estimate that a 5 km long plasma-brake tether weighing 0.055 kg could produce 0.43 mN breaking force, which is enough to reduce the orbital altitude of a 260 kg object mass by 100 km over 1 year.


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3258-3264 ◽  
Author(s):  
S. A. GRIGERA ◽  
A. P. MACKENZIE ◽  
A. J. SCHOFIELD ◽  
S. R. JULIAN ◽  
G. G. LONZARICH

In this paper, we discuss the concept of a metamagnetic quantum critical end-point, consequence of the depression to zero temperature of a critical end-point terminating a line of first order first transitions. This new type of quantum critical point (QCP) is interesting both from a fundamental point of view: a study of a symmetry conserving QCP, and because it opens the possibility of the use of symmetry breaking tuning parameters, notably the magnetic field. In addition, we discuss the experimental evidence for the existence of such a QCP in the bilayer ruthenate Sr3Ru2O7.


Sign in / Sign up

Export Citation Format

Share Document