scholarly journals Properties of an MLE algorithm for the multivariate linear model with a separable covariance matrix structure

2021 ◽  
Vol 58 (1) ◽  
pp. 69-79
Author(s):  
Anna Szczepańska-Álvarez ◽  
Bogna Zawieja ◽  
Adolfo Álvarez

Summary In this paper we present properties of an algorithm to determine the maximum likelihood estimators of the covariance matrix when two processes jointly affect the observations. Additionally, one process is partially modeled by a compound symmetry structure. We perform a simulation study of the properties of an iteratively determined estimator of the covariance matrix.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jimmy Reyes ◽  
Osvaldo Venegas ◽  
Héctor W. Gómez

In this paper we introduce a new distribution, called the modified slash Lindley distribution, which can be seen as an extension of the Lindley distribution. We show that this new distribution provides more flexibility in terms of kurtosis and skewness than the Lindley distribution. We derive moments and some basic properties for the new distribution. Moment estimators and maximum likelihood estimators are calculated using numerical procedures. We carry out a simulation study for the maximum likelihood estimators. A fit of the proposed model indicates good performance when compared with other less flexible models.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248873
Author(s):  
Majdah Badr ◽  
Muhammad Ijaz

The paper addresses a new four-parameter probability distribution called the Exponentiated Exponential Burr XII or abbreviated as EE-BXII. We derive various statistical properties in addition to the parameter estimation, moments, and asymptotic confidence bounds. We estimate the precision of the maximum likelihood estimators via a simulation study. Furthermore, the utility of the proposed distribution is evaluated by using two lifetime data sets and the results are compared with other existing probability distributions. The results clarify that the proposed distribution provides a better fit to these data sets as compared to the existing probability distributions.


Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Ibrahim Elbatal ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy ◽  
Sharifah Alrajhi

In this paper, we introduce a new continuous probability distribution with five parameters called the modified beta Gompertz distribution. It is derived from the modified beta generator proposed by Nadarajah, Teimouri and Shih (2014) and the Gompertz distribution. By investigating its mathematical and practical aspects, we prove that it is quite flexible and can be used effectively in modeling a wide variety of real phenomena. Among others, we provide useful expansions of crucial functions, quantile function, moments, incomplete moments, moment generating function, entropies and order statistics. We explore the estimation of the model parameters by the obtained maximum likelihood method. We also present a simulation study testing the validity of maximum likelihood estimators. Finally, we illustrate the flexibility of the distribution by the consideration of two real datasets.


Sign in / Sign up

Export Citation Format

Share Document