scholarly journals Hydromagnetic Flow Past an Exponentially Accelerated Isothermal Vertical Plate with Uniform Mass Diffusion in the Presence of Chemical Reaction of first Order

2013 ◽  
Vol 18 (1) ◽  
pp. 259-267 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
V. Valliammal

An exact solution of an unsteady flow past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion in the presence of a transverse magnetic field has been studied. The plate temperature is raised to Tw and the species concentration level near the plate is also made to rise Cʹw . The dimensionless governing equations are solved using the Laplace-transform technique. The velocity, temperature and concentration profiles are studied for different physical parameters such as the magnetic field parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, time and a. It is observed that the velocity decreases with increasing the magnetic field parameter.

2013 ◽  
Vol 18 (4) ◽  
pp. 1087-1097
Author(s):  
R. Muthucumaraswamy ◽  
N. Dhanasekar ◽  
G. Easwara Prasad

Abstract An exact analysis of rotation effects on an unsteady flow of an incompressible and electrically conducting fluid past a uniformly accelerated infinite isothermal vertical plate, under the action of a transversely applied magnetic field is presented. The plate temperature is raised linearly with time and the concentration level near the plate is also raised to C’w. The dimensionless governing equations are solved using the Laplace-transform technique. The velocity profiles, temperature and concentration are studied for different physical parameters such as the magnetic field parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of the thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing values of the magnetic field parameter or rotation parameter Ω.


2014 ◽  
Vol 19 (2) ◽  
pp. 419-426
Author(s):  
P. Chandrakala ◽  
P. Narayana Bhaskar

Abstract A numerical technique is employed to derive a solution to the transient natural convection flow of an incompressible viscous fluid past an impulsively started infinite isothermal vertical plate with uniform mass diffusion in the presence of a magnetic field and homogeneous chemical reaction of first order. The governing equations are solved using implicit finite-difference method. The effects of velocity, temperature and concentration for different parameters such as the magnetic field parameter, chemical reaction parameter, Prandtl number, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the fluid velocity decreases with increasing the chemical reaction parameter and the magnetic field parameter.


2013 ◽  
Vol 18 (3) ◽  
pp. 727-737
Author(s):  
R. Muthucumaraswamy ◽  
E. Geetha

Abstract An exact solution of first order chemical reaction effects on a radiative flow past a linearly accelerated infinite isothermal vertical plate with variable mass diffusion, under the action of a transversely applied magnetic field has been presented. The plate temperature is raised linearly with time and the concentration level near the plate is also raised to C'w linearly with time. The dimensionless governing equations are tackled using the Laplace-transform technique. The velocity, temperature and concentration fields are studied for different physical parameters such as the magnetic field parameter, radiation parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that velocity increases with decreasing magnetic field parameter or radiation parameter. But the trend is just reversed with respect to the chemical reaction parameter


2013 ◽  
Vol 18 (2) ◽  
pp. 599-608
Author(s):  
R. Muthucumaraswamy ◽  
V. Visalakshi

Thermal radiation effects on an unsteady free convective flow of a viscous incompressible flow of a past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion in the presence magnetic field are considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised to Tw and the concentration level near the plate is also raised to Cʹw . An exact solution to the dimensionless governing equations is obtained by the Laplace transform method, when the plate is exponentially accelerated with a velocity u= u0 exp(aʹtʹ) in its own plane against gravitational field. The effects of velocity, temperature and concentration fields are studied for different physical parameters such as the magnetic field parameter, thermal radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing magnetic field parameter or radiation parameter. But the trend is just reversed with respect to a or t .


2006 ◽  
Vol 33 (1) ◽  
pp. 17-29 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
B. Janakiraman

An analysis is performed to study the effects of thermal radiation on unsteady free convective flow over a moving vertical plate with mass transfer in the presence of magnetic field. The fluid considered here is a gray, absorbing-emitting radiation but a non- scattering medium. The plate temperature is raised to T 0 and the concentration level near the plate is also raised linearly with time. The dimensionless governing equations are solved using the Laplace transform technique. The velocity, temperature and concentration are studied for different parameters like the magnetic field parameter, radiation parameter, thermal Grashof number, mass Grashof number and time. It is observed that the velocity decreases with increasing magnetic field parameter or radiation parameter. .


2014 ◽  
Vol 19 (1) ◽  
pp. 195-202
Author(s):  
R. Muthucumaraswamy ◽  
V. Lakshmi

Abstract A theoretical solution of thermal radiation effects on an unsteady flow past a parabolic starting motion of an infinite isothermal vertical plate with uniform mass diffusion has been studied. The plate temperature as well as the concentration level near the plate are raised uniformly. The dimensionless governing equations are solved using the Laplace-transform technique. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The effects of velocity profiles are studied for different physical parameters such as the thermal radiation parameter, thermal Grashof number, mass Grashof number and Schmidt number. It is observed that the velocity increases with increasing values the thermal Grashof number or mass Grashof number. The trend is just reversed with respect to the thermal radiation parameter


2013 ◽  
Vol 18 (3) ◽  
pp. 945-953
Author(s):  
R. Muthucumaraswamy ◽  
P. Balachandran ◽  
K. Ganesan

Abstract An exact solution of an unsteady radiative flow past a uniformly accelerated infinite vertical plate with variable temperature and mass diffusion is presented here, taking into account the homogeneous chemical reaction of first order. The plate temperature as well as concentration near the plate is raised linearly with time. The dimensionless governing equations are solved using the Laplace-transform technique. The velocity, temperature and concentration fields are studied for different physical parameters such as the thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number, radiation parameter, chemical reaction parameter and time. It is observed that the velocity increases with increasing values of the thermal Grashof number or mass Grashof number. But the trend is just reversed with respect to the thermal radiation parameter. It is also observed that the velocity increases with the decreasing chemical reaction parameter


2020 ◽  
Vol 65 (1) ◽  
pp. 79-95
Author(s):  
Gaurav Kumar

In the present paper, we study the effect of heat absorption on unsteady flow of a viscous, incompressible, electrically conducting fluid past an impulsively started inclined plate with variable wall temperature and mass diffusion in the presence of transversely applied uniform magnetic field and Hall current. Earlier we analyzed the effects of radiation and chemical reaction on MHD flow past a vertical plate with variable temperature and mass diffusion. We had obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering heat absorption on fluid, and changing the geometry of the model. Here in this paper we are considering the plate positioned inclined from vertically plane and impulsively started with velocity u0. The temperature of plate and the concentration level near the plate is increase linearly with time. The governing equations involved in the present analysis are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters like thermal Grashof number, mass Grashof Number, Prandtl number, permeability parameter, Hall current parameter, heat absorption parameter, magnetic field parameter and Schmidt number. The numerical values obtained for skin-friction and Nusselt number have been tabulated. The results are found to be in a good agreement and the data obtained is in concurrence with the actual MHD fluid flow phenomenon.


2016 ◽  
Vol 21 (1) ◽  
pp. 95-105 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
P. Sivakumar

Abstract The problem of MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction has been examined in detail in this paper. The fluid considered here is a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing coupled linear partial differential equations are solved using the Laplace transform technique. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time on the velocity, temperature, concentration. The results are discussed graphically and qualitatively. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. The model finds applications in solar energy collection systems, geophysics and astrophysics, aerospace and also in the design of high temperature chemical process systems.


The effects of heat source/sink and chemical reaction with mass diffusion on free convective incompressible viscous fluid flow past an accelerated vertical plate with magnetic field has been investigated. Laplace transformation method has been applied to solve the system of linear partial differential equations. The result is presented in form of complementary error function and exponential function. The effect of non dimensional parameters such as Schmidt number (Sc), Accelerated parameter (a), Chemical reaction parameter (K), Prandtl number (Pr), Magnetic field parameter (M), Mass Grashof number (Gm), Heat source/sink parameter (H), Thermal Grashof number (Gr) on temperature, concentration, velocity has been discussed with graphs.


Sign in / Sign up

Export Citation Format

Share Document