scholarly journals Antifungal Activities of Propolis and its Main Components with an Emphasis Against Phytopathogenic Fungi

2021 ◽  
Vol 65 (1) ◽  
pp. 5-24
Author(s):  
Auriane Dudoit ◽  
Nicolas Cardinault ◽  
Christian Mertz ◽  
Marc Chillet ◽  
Pierre Brat

Abstract Propolis is produced by honey bees from a series of resinous, gummy and balsamic substances collected from the leaf buds of different tree species and mixed with their secretions. It is used as a sealant and antiseptic in the hive. Because of its antimicrobial properties, propolis has become a popular alternative medicine or food for health protection and disease prevention. The presence of a large number of flavonoids, aromatic acids and phenolic compounds has been suggested to be responsible for most biological and pharmacological activities of propolis. This review aims to provide a critical analysis of the different studies which evaluate the activity of propolis against fungi and to identify the chemical components responsible for such activity. The discussion of the methodological approaches used and the issued results is a key point of this review to highlight knowledge gaps. This review will first describe the chemical composition of the propolis and the factors of variability including geographical and botanical origins and then examine its antifungal activities with a focus against phytopathogenic fungi. Finally, it will discuss the main components responsible for such activities and their mechanism of action.

Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1642
Author(s):  
Adriana Skendi ◽  
Dimitrios Ν. Katsantonis ◽  
Paschalina Chatzopoulou ◽  
Maria Irakli ◽  
Maria Papageorgiou

The antifungal effect of aromatic plants (oregano, thyme, and Satureja) in dry form and as essential oils was evaluated in vitro (in potato dextrose agar (PDA)) and in bread against two phytopathogenic fungi found in food (Aspergillusniger and Penicillium). Gas and liquid chromatography were used to analyze essential oils attained by hydrodistillation of the aerial parts of the aromatic plants and of the dried plant aqueous solutions that were autoclaved for 20 min at 121 °C before analysis. Carvacrol, α-pinene, p-cymene, and γ-terpinene were the main components of the essential oils, whereas carvacrol, rosmarinic and caffeic acids were the main components of the water extracts. In vitro antifungal test results showed that the addition of plants in dry form had great antifungal potential against both fungal strains studied. Penicillium was more sensitive to the presence of aromatic plants than Aspergillus. Among the three plant species tested, thyme was the most potent antifungal against both fungi. For the bread product, all three aromatic plants studied showed inhibitory effects against both fungi. Results presented here suggest that oregano, thyme and Satureja incorporated in a bread recipe possess antimicrobial properties and are a potential source of antimicrobial ingredients for the food industry.


2018 ◽  
Vol 15 (1) ◽  
pp. 21-33
Author(s):  
Ying Wei ◽  
Yongqiao Liu ◽  
Yifan Hele ◽  
Weiwei Sun ◽  
Yang Wang ◽  
...  

Background: Gentianella acuta (Michx.) Hulten is an important type of medicinal plant found in several Chinese provinces. It has been widely used in folk medicine to treat various illnesses. However, there is not enough detailed information about the chemical constituents of this plant or methods for their content determination. Objective: The focus of this work is the isolation and characterization of the major chemical constituents of Gentianella acuta, and developing an analytical method for their determination. Methods: The components of Gentianella acuta were isolated using (1) ethanol extraction and adsorption on macroporous resin. (2) and ethyl acetate extraction and high speed countercurrent chromatography. A HPLC-DAD method was developed using a C18 column and water-acetonitrile as the mobile phase. Based on compound polarities, both isocratic and gradient elution methods were developed. Results: A total of 29 compounds were isolated from this plant, of which 17 compounds were isolated from this genus for the first time. The main components in this plant were found to be xanthones. The HPLC-DAD method was developed and validated for their determination, and found to show good sensitivity and reliability. Conclusion: The results of this work add to the limited body of work available on this important medicinal plant. The findings will be useful for further investigation and development of Gentianella acuta for its valuable medicinal properties.


1992 ◽  
Vol 57 (5) ◽  
pp. 1134-1142 ◽  
Author(s):  
Bohuslav Rittich ◽  
Marta Pirochtová ◽  
Jiří Hřib ◽  
Kamila Jurtíková ◽  
Petr Doležal

The present paper deals with the relationship between biological activities of some aliphatic and aromatic acids and their physico-chemical parameters expressing the influence of hydrophobic factors. The test strain in the biotest of growth inhibition was the fungus Fusarium moniliforme CCMF-180 and Penicillium expansum CCMF-576. Significant relationship between antifungal activities of un-ionized form of aliphatic acids and their capacity factors (log k'0) extrapolated to pure water, partition coefficients determined in 1-octanol-water system (log Poct) and the first order of molecular connectivity indices (1χ) were calculated. The ionized form of aliphatic acids were antifungally active too. For benzoic acids significant relationships between antifungal activities and capacity factors of anionic form (log k'ia) were calculated.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1567
Author(s):  
Ippolito Camele ◽  
Daniela Gruľová ◽  
Hazem S. Elshafie

Several economically important crops, fruits and vegetables are susceptible to infection by pathogenic fungi and/or bacteria postharvest or in field. Recently, plant essential oils (EOs) extracted from different medicinal and officinal plants have had promising antimicrobial effects against phytopathogens. In the present study, the potential microbicide activity of Mentha × piperita cv. ‘Kristinka’ (peppermint) EO and its main constituents have been evaluated against some common phytopathogens. In addition, the cell membrane permeability of the tested fungi and the minimum fungicidal concentrations were measured. The antifungal activity was tested against the following postharvest fungi: Botrytis cinerea, Monilinia fructicola, Penicillium expansum and Aspergillus niger, whereas antibacterial activity was evaluated against Clavibacter michiganensis, Xanthomonas campestris, Pseudomonas savastanoi and P. syringae pv. phaseolicola. The chemical analysis has been carried out using GC-MS and the main components were identified as menthol (70.08%) and menthone (14.49%) followed by limonene (4.32%), menthyl acetate (3.76%) and β-caryophyllene (2.96%). The results show that the tested EO has promising antifungal activity against all tested fungi, whereas they demonstrated only a moderate antibacterial effect against some of the tested bacteria.


2016 ◽  
Vol 11 (7) ◽  
pp. 1934578X1601100
Author(s):  
Simona Casiglia ◽  
Maurizio Bruno ◽  
Sergio Rosselli ◽  
Felice Senatore

The chemical composition of the essential oil from flowers of Eringium triquetrum Vahl. collected in Sicily was evaluated by GC and GC-MS. The main components were pulegone (50.6%), piperitenone (30.5%) and menthone (7.0%). Comparison of this oil with other studied oils of Eringium species is discussed. The oil showed good antibacterial and antifungal activities against some microorganisms that infest historical art works.


2011 ◽  
Vol 230-232 ◽  
pp. 852-856
Author(s):  
Qing Li ◽  
Dang Quan Zhang ◽  
Qi Mei Liu ◽  
Kuan Peng

The chemical components of helium volatiles from the fresh branches of Cinnamomum camphora were studied by TD-GC/MS. The analytical result by 60°С-based TD-GC/MS showed that 55 peaks were obtained from the helium volatiles from the fresh branches of Cinnamomum camphora and 53 chemical compounds were identified. The results showed that the main components were as: Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1R)- (15.4328%), 1,3-Benzodioxole, 5-(2-propenyl)- (14.881%), Tricyclo[2.2.1.0(2,6)]heptane, 1,7-dimethyl-7-(4-methyl-3-pentenyl)-, (-)- (12.694%), p-menth-1-en-8-ol (9.832%), Bicyclo[2.2.1]heptane, 2-methyl-3-methylene-2-(4-methyl-3- pentenyl)-, (1S-exo)- (6.143%), 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl- (5.365%), Bicyclo[3.1.1] hept-2-ene, 2,6-dimethyl-6-(4-methyl-3-pentenyl)- (4.527%), Naphthalene, 1,2,3,5,6,8a- hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)- (4.129%), 3-Cyclohexen-1-ol, 4-methyl-1- (1-methylethyl)- (2.965%), Borneol (2.627%), Bicyclo[2.2.1]heptan-2-ol, 1,7,7-trimethyl-, acetate, (1S-endo)- (2.586%), Copaene (2.534%), 1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene-, (Z)- (1.612%), (-)-Isosativene (1.121%), etc. The analytical result suggested that the helium volatiles from the fresh branches of Cinnamomum camphora could be used as industrial materials of biomedicines and spicery.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1045
Author(s):  
Marian Hýbl ◽  
Andrea Bohatá ◽  
Iva Rádsetoulalová ◽  
Marek Kopecký ◽  
Irena Hoštičková ◽  
...  

Essential oils and their components are generally known for their acaricidal effects and are used as an alternative to control the population of the Varroa destructor instead of synthetic acaricides. However, for many essential oils, the exact acaricidal effect against Varroa mites, as well as the effect against honey bees, is not known. In this study, 30 different essential oils were screened by using a glass-vial residual bioassay. Essential oils showing varroacidal efficacy > 70% were tested by the complete exposure assay. A total of five bees and five mites were placed in the Petri dishes in five replications for each concentration of essential oil. Mite and bee mortality rates were assessed after 4, 24, 48, and 72 h. The LC50 values and selectivity ratio (SR) were calculated. For essential oils with the best selectivity ratio, their main components were detected and quantified by GC-MS/MS. The results suggest that the most suitable oils are peppermint and manuka (SR > 9), followed by oregano, litsea (SR > 5), carrot, and cinnamon (SR > 4). Additionally, these oils showed a trend of the increased value of selective ratio over time. All these oils seem to be better than thymol (SR < 3.2), which is commonly used in beekeeping practice. However, the possible use of these essential oils has yet to be verified in beekeeping practice.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 980 ◽  
Author(s):  
Dorra Dridi ◽  
Aicha Bouaziz ◽  
Sondes Gargoubi ◽  
Abir Zouari ◽  
Fatma B’chir ◽  
...  

We report an analysis of chemical components of essential oils from barks of Ceylon cinnamon and cloves of Syzygium aromaticum and an investigation of their antibacterial activity. The components of oils were determined by using Gas Chromatography/Mass Spectrometry (GC-MS) analysis, and the antimicrobial activity was assessed by the disk diffusion test. The synergic effect of essential oils mixture (cinnamon oil and clove oil) was evaluated. Antimicrobial properties were conferred to cellulosic fibers through microencapsulation using citric acid as a green binding agent. Essential oil mixture was encapsulated by coacervation using chitosan as a wall material and sodium hydroxide as a hardening agent. The diameter of the produced microcapsules varies between 12 and 48 μm. Attachment of the produced microcapsules onto cotton fabrics surface was confirmed by Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy, optical microscopy and Scanning Electron Microscopy (SEM) analysis. The results show that microcapsules were successfully attached on cotton fabric surfaces, imparting antibacterial activity without significantly affecting their properties. The finished cotton fabrics exhibited good mechanical properties and wettability.


Sign in / Sign up

Export Citation Format

Share Document