scholarly journals On The Estimation of Temporal Changes of Snow Water Equivalent by Spaceborne Sar Interferometry: A New Application for the Sentinel-1 Mission

2019 ◽  
Vol 67 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Vasco Conde ◽  
Giovanni Nico ◽  
Pedro Mateus ◽  
João Catalão ◽  
Anna Kontu ◽  
...  

Abstract In this work we present a methodology for the mapping of Snow Water Equivalent (SWE) temporal variations based on the Synthetic Aperture Radar (SAR) Interferometry technique and Sentinel-1 data. The shift in the interferometric phase caused by the refraction of the microwave signal penetrating the snow layer is isolated and exploited to generate maps of temporal variation of SWE from coherent SAR interferograms. The main advantage of the proposed methodology with respect to those based on the inversion of microwave SAR backscattering models is its simplicity and the reduced number of required in-situ SWE measurements. The maps, updated up to every 6 days, can attain a spatial resolution up to 20 m with sub-centimetre ΔSWE measurement accuracy in any weather and sun illumination condition. We present results obtained using the proposed methodology over a study area in Finland. These results are compared with in-situ measurements of ΔSWE, showing a reasonable match with a mean accuracy of about 6 mm.

2020 ◽  
Author(s):  
Maria Gritsevich ◽  
Giovanni Nico ◽  
Vasco Conde ◽  
Pedro Mateus ◽  
Joao Catalao

<p>We have recently investigated the use of SAR interferometry for the mapping of Snow Water Equivalent (SWE) temporal variations using Sentinel-1 data [1]. Maps of temporal changes of SWE, measured with a sub-centimetre accuracy and updated every six days have been obtained over a study area in Finland. This methodology relies on the shift in the interferometric phase caused by the refraction of the microwave signal penetrating the snow layer. In this work, we investigate phase inconsistencies [2] of a sets of three interferograms obtained from three Sentinel-1 images acquired along the same orbit at different acquisition times to study the snow melt. We find that while phase inconsistencies are not expected to be present in case of examining surfaces covered with frozen snow, the scattering mechanism of microwave in the snow layer during the melting phase affects both the interferometric phase and coherence.</p><p> </p><p>This work was supported, in part, by the Academy of Finland project no. 325806.</p><p> </p><p>References:</p><p>[1] V. Conde, G. Nico, P. Mateus, J. Catalão, A. Kontu, M. Gritsevich, On the estimation of temporal changes of snow water equivalent by spaceborne SAR interferometry: a new application for the Sentinel-1 mission, J. Hydrol. Hydromech., 67, 2019, 1, 93–100. DOI: 10.2478/johh-2018-0003</p><p>[2] F. De Zan, M. Zonno, P. López-Dekker, Phase inconsistencies and multiple scattering in SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 53(12), 6608-6616, 2015</p>


2021 ◽  
Author(s):  
Jorge Jorge Ruiz ◽  
Juha Lemmetyinen ◽  
Anna Kontu ◽  
Jouni Pulliainen

<p>Interferometric Synthetic Aperture Radar (InSAR) imagery is a promising technique for retrieving Snow Water Equivalent (SWE). It exploits the relation of the interferometric phase to the amount and density of the snow in the radar signal path, leading to a quasi-linear relation with SWE (Guneriussen et al., 2001; Leinss et al., 2015). Here, we analyze timeseries of Sentinel-1 and ALOS-2 interferometric image pairs, collected over a test site in Sodankylä, Northern Finland, during the winter of 2019-2020. The satellite imagery is complemented by tower-based SAR observations using SodSAR (Sodankylä SAR) a 1-10GHz fully polarimetric SAR instrument. Typical satellite visit times (7 and 14 days) are compared with the 12-hour temporal resolution provided by SodSAR. Interferometric pairs from the three sensors are generated, and the interferograms are used to estimate the increase in SWE between the image acquisitions. Retrieved SWE is compared with measurements of an in-situ SWE scale, as well as manual ground observations made in the area. Coherence conservation and its relation with various meteorological events are also analyzed.</p>


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1120 ◽  
Author(s):  
Mohamed Baba ◽  
Simon Gascoin ◽  
Lionel Jarlan ◽  
Vincent Simonneaux ◽  
Lahoucine Hanich

The Ourika River is an important tributary of the Tensift River in the water-stressed region of Marrakesh (Morocco). The Ourika river flow is dominated by the snow melt contribution from the High Atlas mountains. Despite its importance in terms of water resources, the snow water equivalent (SWE) is poorly monitored in the Ourika catchment. Here, we used MERRA-2 data to run a distributed energy-balance snowpack model (SnowModel) over 2000–2018. MERRA-2 data were downscaled to 250-m spatial resolution using a digital elevation model. The model outputs were compared to in situ measurements of snow depth, precipitation, river flow and remote sensing observations of the snow cover area from MODIS. The results indicate that the model provides an overall acceptable representation of the snow cover dynamics given the coarse resolution of the MERRA-2 forcing. Then, we used the model output to analyze the spatio-temporal variations of the SWE in the Ourika catchment for the first time. We suggest that MERRA-2 data, which are routinely available with a delay of a few weeks, can provide valuable information to monitor the snow resource in high mountain areas without in situ measurements.


2019 ◽  
Vol 13 (11) ◽  
pp. 3045-3059 ◽  
Author(s):  
Nick Rutter ◽  
Melody J. Sandells ◽  
Chris Derksen ◽  
Joshua King ◽  
Peter Toose ◽  
...  

Abstract. Spatial variability in snowpack properties negatively impacts our capacity to make direct measurements of snow water equivalent (SWE) using satellites. A comprehensive data set of snow microstructure (94 profiles at 36 sites) and snow layer thickness (9000 vertical profiles across nine trenches) collected over two winters at Trail Valley Creek, NWT, Canada, was applied in synthetic radiative transfer experiments. This allowed for robust assessment of the impact of estimation accuracy of unknown snow microstructural characteristics on the viability of SWE retrievals. Depth hoar layer thickness varied over the shortest horizontal distances, controlled by subnivean vegetation and topography, while variability in total snowpack thickness approximated that of wind slab layers. Mean horizontal correlation lengths of layer thickness were less than a metre for all layers. Depth hoar was consistently ∼30 % of total depth, and with increasing total depth the proportion of wind slab increased at the expense of the decreasing surface snow layer. Distinct differences were evident between distributions of layer properties; a single median value represented density and specific surface area (SSA) of each layer well. Spatial variability in microstructure of depth hoar layers dominated SWE retrieval errors. A depth hoar SSA estimate of around 7 % under the median value was needed to accurately retrieve SWE. In shallow snowpacks <0.6 m, depth hoar SSA estimates of ±5 %–10 % around the optimal retrieval SSA allowed SWE retrievals within a tolerance of ±30 mm. Where snowpacks were deeper than ∼30 cm, accurate values of representative SSA for depth hoar became critical as retrieval errors were exceeded if the median depth hoar SSA was applied.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 890
Author(s):  
Mohamed Wassim Baba ◽  
Abdelghani Boudhar ◽  
Simon Gascoin ◽  
Lahoucine Hanich ◽  
Ahmed Marchane ◽  
...  

Melt water runoff from seasonal snow in the High Atlas range is an essential water resource in Morocco. However, there are only few meteorological stations in the high elevation areas and therefore it is challenging to estimate the distribution of snow water equivalent (SWE) based only on in situ measurements. In this work we assessed the performance of ERA5 and MERRA-2 climate reanalysis to compute the spatial distribution of SWE in the High Atlas. We forced a distributed snowpack evolution model (SnowModel) with downscaled ERA5 and MERRA-2 data at 200 m spatial resolution. The model was run over the period 1981 to 2019 (37 water years). Model outputs were assessed using observations of river discharge, snow height and MODIS snow-covered area. The results show a good performance for both MERRA-2 and ERA5 in terms of reproducing the snowpack state for the majority of water years, with a lower bias using ERA5 forcing.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2265 ◽  
Author(s):  
Qingqing Feng ◽  
Huaping Xu ◽  
Zhefeng Wu ◽  
Wei Liu

Deceptive jamming against synthetic aperture radar (SAR) can create false targets or deceptive scenes in the image effectively. Based on the difference in interferometric phase between the target and deceptive jamming signals, a novel method for detecting deceptive jamming using cross-track interferometry is proposed, where the echoes with deceptive jamming are received by two SAR antennas simultaneously and the false targets are identified through SAR interferometry. Since the derived false phase is close to a constant in interferogram, it is extracted through phase filtering and frequency detection. Finally, the false targets in the SAR image are obtained according to the detected false part in the interferogram. The effectiveness of the proposed method is validated by simulation results based on the TanDEM-X system.


2021 ◽  
Author(s):  
Vincent Vionnet ◽  
Colleen Mortimer ◽  
Mike Brady ◽  
Louise Arnal ◽  
Ross Brown

Abstract. In situ measurements of snow water equivalent (SWE) – the depth of water that would be produced if all the snow melted – are used in many applications including water management, flood forecasting, climate monitoring, and evaluation of hydrological and land surface models. The Canadian historical SWE dataset (CanSWE) combines manual and automated pan-Canadian SWE observations collected by national, provincial and territorial agencies as well as hydropower companies. Snow depth and derived bulk snow density are also included when available. This new dataset supersedes the previous Canadian Historical Snow Survey (CHSSD) dataset published by Brown et al. (2019), and this paper describes the efforts made to correct metadata, remove duplicate observations, and quality control records. The CanSWE dataset was compiled from 15 different sources and includes SWE information for all provinces and territories that measure SWE. Data were updated to July 2020 and new historical data from the Government of Northwest Territories, Government of Newfoundland and Labrador, Saskatchewan Water Security Agency, and Hydro Quebec were included. CanSWE includes over one million SWE measurements from 2607 different locations across Canada over the period 1928–2020. It is publicly available at https://doi.org/10.5281/zenodo.4734372 (Vionnet et al., 2021).


2019 ◽  
Author(s):  
Edward H. Bair ◽  
Karl Rittger ◽  
Jawairia A. Ahmad ◽  
Doug Chabot

Abstract. Ice and snowmelt feed the Indus and Amu Darya rivers, yet there are limited in situ measurements of these resources. Previous work in the region has shown promise using snow water equivalent (SWE) reconstruction, which requires no in situ measurements, but validation has been a problem until recently when we were provided with daily manual snow depth measurements from Afghanistan, Tajikistan, and Pakistan by the Aga Khan Agency for Habitat (AKAH). For each station, accumulated precipitation and SWE were derived from snow depth using the SNOWPACK model. High-resolution (500 m) reconstructed SWE estimates from the ParBal model were then compared to the modeled SWE at the stations. The Alpine3D model was then used to create spatial estimates at 25 km to compare with estimates from other snow models. Additionally, the coupled SNOWPACK and Alpine3D system has the advantage of simulating snow profiles, which provide stability information. Following previous work, the median number of critical layers and percentage of facets across all of the pixels containing the AKAH stations was computed. For SWE at the point scale, the reconstructed estimates showed a bias of −42 mm (−19 %) at the peak. For the coarser spatial SWE estimates, the various models showed a wide range, with reconstruction being on the lower end. For stratigraphy, a heavily faceted snowpack is observed in both years, but 2018, a dry year, according to most of the models, showed more critical layers that persisted for a longer period.


Sign in / Sign up

Export Citation Format

Share Document