scholarly journals Reconstruction of the depositional sedimentary environment of Oligocene deposits (Qom Formation) in the Qom Basin (northern Tethyan seaway), Iran

Geologos ◽  
2020 ◽  
Vol 26 (2) ◽  
pp. 93-111
Author(s):  
Amrollah Safari ◽  
Hossein Ghanbarloo ◽  
Parisa Mansoury ◽  
Mehran Mohammadian Esfahani

AbstractDuring the Rupelian–Chattian, the Qom Basin (northern seaway basin) was located between the Paratethys in the north and the southern Tethyan seaway in the south. The Oligocene deposits (Qom Formation) in the Qom Basin have been interpreted for a reconstruction of environmental conditions during deposition, as well as of the influence of local fault activities and global sea level changes expressed within the basin. We have also investigated connections between the Qom Basin and adjacent basins. Seven microfacies types have been distinguished in the former. These microfacies formed within three major depositional environments, i.e., restricted lagoon, open lagoon and open marine. Strata of the Qom Formation are suggested to have been formed in an open-shelf system. In addition, the deepening and shallowing patterns noted within the microfacies suggest the presence of three third-order sequences in the Bijegan area and two third-order depositional sequences and an incomplete depositional sequence in the Naragh area. Our analysis suggests that, during the Rupelian and Chattian stages, the depositional sequences of the Qom Basin were influenced primarily by local tectonics, while global sea level changes had a greater impact on the southern Tethyan seaway and Paratethys basins. The depositional basins of the Tethyan seaway (southern Tethyan seaway, Paratethys Basin and Qom Basin) were probably related during the Burdigalian to Langhian and early Serravallian.

2019 ◽  
Vol 131 ◽  
pp. 01029
Author(s):  
Zijie Wu ◽  
Mishan Zhong ◽  
Fuliang Gao ◽  
Niangang Luo

As one of the only Cambrian Terreneuvian rock stratas in southern Liaoning, the Dalinzi Formation is of great significance for studying the evolution of the Early Cambrian sedimentary basin and the global sea level change in North China. Taking the Zhaokanzi section as an example, the sedimentary facies of the Dalinzi Formation in southern Liaoning were identified, and then the sequence stratigraphy was studied. The study suggests that the Dalinzi Formation is formed in the lagoon and tidal flat sedimentary environment, and a three-level sequence and several parasequences and parasequence sets can be divided. The relative sea level changes and sedimentary basin evolution are discussed.


2001 ◽  
Vol 3 (3-4) ◽  
pp. 285-307 ◽  
Author(s):  
An SMEESTERS ◽  
Philippe MUCHEZ ◽  
Luc HANCE

Strata of late Devonian and Tournaisian age in Belgium and Southern China were studied sedimentologically. This detailed study integrated into a biostratigraphical framework, based on foraminiferal zonation, allowed the construction of a sequence stratigraphical model for both areas. Based on these models a correlation on the scale of third order sequences between these two widely separated depositional environments can be made. This indicates the eustatic nature of the sea-level changes that caused the sedimentological changes during the Tournaisian.


2021 ◽  
Author(s):  
Gustav Pallisgaard-Olesen ◽  
Vivi Kathrine Pedersen ◽  
Natalya Gomez

<div> <p>The landscape in western Scandinavia has undergone dramatic changes through numerous glaciations during the Quaternary. These changes in topography and in the volumes of offshore sediment deposits, have caused significant isostatic adjustments and local sea level changes, owing to erosional unloading and depositional loading of the lithosphere. Mass redistribution from erosion and deposition also has the potential to cause significant pertubations of the geoid, resulting in additional sea-level changes. The combined sea-level response from these processes, is yet to be investigated in detail for Scandinavia.</p> </div><div> <p>In this study we estimate the total sea level change from late-Pliocene- Quaternary glacial erosion and deposition in the Scandinavian region, using a gravitationally self-consistent global sea level model that includes the full viscoelastic response of the solid Earth to surface loading and unloading. In addition to the total late Pliocene-Quaternary mass redistribution, we <span>also </span>estimate transient sea level changes related specifically to the two latest glacial cycles.</p> </div><div> <p>We utilize existing observations of offshore sediment thicknesses of glacial origin, and combine these with estimates of onshore glacial erosion and estimates of erosion on the inner shelf. Based on these estimates, we can define mass redistribution and construct a preglacial landscape setting.</p> </div><div> <p>Our preliminary results show <span>perturbations of</span> the local sea level up to ∼ 200 m since<span> the</span> late-Pliocene in the Norwegian Sea, suggesting that erosion and deposition ha<span>ve</span> influenced the local paleo sea level history in Scandinavia significantly.</p> </div>


Clay Minerals ◽  
1993 ◽  
Vol 28 (1) ◽  
pp. 61-84 ◽  
Author(s):  
M. Thiry ◽  
T. Jacquin

AbstractThe distribution of clay minerals from the N and S Atlantic Cretaceous deep-sea sediments is related to rifting, sea-floor spreading, sea-level variations and paleoceanography. Four main clay mineral suites were identified: two are inherited and indicative of ocean geodynamics, whereas the others result from transformation and authigenesis and are diagnostic of Cretaceous oceanic depositional environments. Illite and chlorite, together with interstratified illite-smectite and smectite occur above the sea-floor basalts and illustrate the contribution of volcanoclastic materials of basaltic origin to the sediments. Kaolinite, with variable amounts of illite, chlorite, smectite and interstratified minerals, indicates detrital inputs from continents near the platform margins. Kaolinite decreases upward in the series due to open marine environments and basin deepening. It may increase in volume during specific time intervals corresponding to periods of falling sea-level during which overall facies regression and erosion of the surrounding platforms occurred. Smectite is the most abundant clay mineral in the Cretaceous deep-sea sediments. Smectite-rich deposits correlate with periods of relatively low sedimentation rates. As paleoweathering profiles and basal deposits at the bottom of Cretaceous transgressive formations are mostly kaolinitic, smectite cannot have been inherited from the continents. Smectite is therefore believed to have formed in the ocean by transformation and recrystallization of detrital materials during early diagenesis. Because of the slow rate of silicate reactions, transformation of clay minerals requires a long residence time of the particles at the water/sediment interface; this explains the relationships between the observed increases in smectite with long-term sea-level rises that tend to starve the basinal settings of sedimentation. Palygorskite, along with dolomite, is relatively common in the N and S Atlantic Cretaceous sediments. It is not detrital because correlative shelf deposits are devoid of palygorskite. Palygorskite is diagnostic of Mg-rich environments and is indicative of the warm and hypersaline bottom waters of the Cretaceous Atlantic ocean.


2021 ◽  
pp. 1-64
Author(s):  
Oussama Abidi ◽  
Kawthar Sebei ◽  
Adnen Amiri ◽  
Haifa Boussiga ◽  
Imen Hamdi Nasr ◽  
...  

The Middle to Upper Eocene series are characterized by multiple hiatuses related to erosion, non-deposition or condensed series in the Cap Bon and Gulf of Hammamet provinces. We performed an integrated study taking advantage from surface and subsurface geology, faunal content, borehole logs, electrical well logs, vertical seismic profiles and surface seismic sections. Calibrated seismic profiles together with borehole data analysis reveal unconformities with deep erosion, pinchouts, normal faulting and basin inversion which are dated Campanian, intra-Lutetian and Priabonian compressive phases; these events were also described at the regional scale in Tunisia. Tectonics, sea level fluctuations and climate changes closely controlled the depositional process during the Middle to Upper Eocene time. The depositional environment ranges from internal to outer platform separated by an inherited paleo-high. We determine eight third order sequences characterizing the interaction between tectonic pulsations, sea level changes and the developed accommodation space within the Middle to Upper Eocene interval. We correlate the obtained results of the Cap Bon-Gulf of Hammamet provinces with the published global charts of sea-level changes and we find a good correspondence across third order cycles. Model-based 3D inversion proved to be a solution to model the lateral and vertical lithological distribution of the Middle to Upper Eocene series.


Author(s):  
Jan Zalasiewicz

In almost everybody’s natural lifetime, the sea is one of the great unchanging certainties of life. There is land; there is sea; and in between is that magical place, the seaside, which is sometimes knocked about a bit by the waves, but always manages to recover for that next idyllic summer. There are, one remembers, those faintly disquieting legends, about a remarkably well-organized and ecologically aware person called Noah, and about a Deluge. But these, of course, should not be taken seriously. They were a jumpy and superstitious lot, our ancestors, always prone to making up scary stories. It was a good way to keep the children in order. With a longer perspective, things seem a little different. Take any one location on the globe, for instance. Track it over millions of years. At that one location, there may be a change from deep ocean, to shallow sea, to a shoreline, and thence to terrestrial swamps and flood plains. And then, perhaps, to the absence of evidence, a horizon of absolutely no thickness at all within a succession of rock strata, in which a million years or a hundred million years—or more—may be missing, entirely unrecorded. It is that phenomenon called an unconformity, all that is left of the history of a terrestrial landscape pushed up into the erosional realm. On that eroding landscape, there may have been episodes of battle, murder, and sudden death among armoured saurians, of fire, flood, and storm, and of the humdrum day-to-day life of the vast vegetarian dinosaurs, chewing through their daily hundredweights of plants. Of this, no trace can persist. Only when that landscape is plunged again towards sea level, and begins to be silted up, can a tangible geological record resume. The Earth’s crust, as we have seen, is malleable, can be pushed downwards or thrust upwards by the forces that drive the continents across the face of the globe. Many of the sea level changes that can be read in the strata of the archives are of this sort, and mark purely local ups and downs of individual sections of crust, with no evidence that global sea level was anything other than constant.


Sign in / Sign up

Export Citation Format

Share Document