scholarly journals Efficiency of selected phase transfer catalysts for the synthesis of 1,2-epoxy-5,9-cyclododecadiene in the presence of H2O2/H3PW12O40 as catalytic system

2013 ◽  
Vol 15 (3) ◽  
pp. 96-99 ◽  
Author(s):  
Grzegorz Lewandowski

Abstract The results of the studies on the influence of the phase transfer catalyst on the epoxidation of (Z,E,E)-1,5,9-cyclododecatriene (CDT) to 1,2-epoxy-5,9-cyclododecadiene (ECDD) in the H2O2/H3PW12O40 system by a method of phase transfer catalysis (PTC) were presented. The following quaternary ammonium salts were used as phase transfer catalysts: methyltributylammonium chloride, (cetyl)pyridinium bromide, methyltrioctylammonium chloride, (cetyl)pyridinium chloride, dimethyl[dioctadecyl(76%)+dihexadecyl(24%)] ammonium chloride, tetrabutylammonium hydrogensulfate, didodecyldimethylammonium bromide and methyltrioctylammonium bromide. Their catalytic activity was evaluated on the basis of the degree of CDT and hydrogen peroxide conversion and the selectivities of transformation to ECDD in relation to consumed CDT and hydrogen peroxide. The most effective PT catalysts were selected based on the obtained results. Among the onium salts under study, the epoxidation of CDT with hydrogen peroxide proceeds the most effectively in the presence of methyltrioctylammonium chloride (Aliquat® 336) and (cetyl)pyridinium chloride (CPC). The relatively good results of CDT epoxidation were also achieved in the presence of Arquad® 2HT and (cetyl)pyridinium bromide

2020 ◽  
Vol 17 (4) ◽  
pp. 405-411
Author(s):  
Chuan-Hui Wang ◽  
Chen-Fu Liu ◽  
Guo-Wu Rao

Oxidation reactions have emerged as one of the most versatile tools in organic chemistry. Various onium salts such as ammonium, phosphonium, arsonium, bismuthonium, tellurium have been used as phase transfer catalysts in many oxidation reactions. Certainly, considerable catalysts have been widely used in Phase-Transfer Catalysis (PTC). This review focuses on the application of PTC in various oxidation reaction. Furthermore, PTC also conforms to the concept of “Green Chemistry”. <p></p> • Oxidation has become one of the most widely used tools in organic chemistry and phase transfer catalysts has been widely used in oxidation. <p></p> • The application of phase transfer catalysts in oxidation reaction will be summarized. <p></p> • Phase transfer catalysts have important application in various oxidation reaction.


2007 ◽  
Vol 9 (3) ◽  
pp. 101-104
Author(s):  
Grzegorz Lewandowski

Comparison of the methods of the phase transfer catalysis and hydroperoxide in the epoxidation of 1,5,9-cyclododecatriene The process of the epoxidation of cis, trans, trans-1,5,9-cyclododecatriene (CDT) to 1,2-epoxy-5,9-cyclododecadiene (ECDD) with the 30% aqueous hydrogen peroxide under the phase transfer conditions and with tert-butyl hydroperoxide under the homogeneous conditions was investigated. Onium salts such as Aliquat® 336, Arquad® 2HT, methyltrioctylammonium bromide and the Na2WO4/H3PO4 catalyst system are very active under the phase transfer catalysis (PTC) conditions for the selective epoxidation of cis, trans, trans-1,5,9-cyclododecatiene (PTC method). These catalytic systems were found to be as active and selective as the homogeneous phase system Mo(CO)6/TBHP (hydroperoxide method).


Author(s):  
Noritaka Ohtani ◽  
Yukihiko Inoue ◽  
Jun Mukudai ◽  
Tsuyoshi Yamashita

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 244 ◽  
Author(s):  
Hongyu Wang

Asymmetric phase-transfer catalysis has been widely applied into organic synthesis for efficiently creating chiral functional molecules. In the past decades, chiral phase-transfer catalysts with proton donating groups are emerging as an extremely significant strategy in the design of novel catalysts, and a large number of enantioselective reactions have been developed. In particular, the proton donating groups including phenol, amide, and (thio)-urea exhibited unique properties for cooperating with the phase-transfer catalysts, and great advances on this field have been made in the past few years. This review summarizes the seminal works on the design, synthesis, and applications of chiral phase-transfer catalysts with strong hydrogen bonding interactions.


Sign in / Sign up

Export Citation Format

Share Document