scholarly journals Synthesis of V2O3/C composites with different morphologies by a facile route and phase transition properties of the compounds

2014 ◽  
Vol 32 (2) ◽  
pp. 236-242 ◽  
Author(s):  
Yifu Zhang ◽  
Nannan Wang ◽  
Yuting Huang ◽  
Chi Huang ◽  
Xiao Mei ◽  
...  

AbstractV2O3 and amorphous carbon composites (V2O3/C composites) with different morphologies (e.g. nanospheres, nanorods and nanosheets) were, for the first time, successfully synthesized by a facile hydrothermal route and subsequent calcination. The as-obtained samples were characterized by X-ray powder diffraction (XRD), energy dispersive spectrometery (EDS), elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The morphology of V2O3/C composites could be easily controlled by varying the reaction time, and, as a result, V2O3/C composites with nanospheres, nanorods and nanosheets were selectively synthesized. Furthermore, the phase transition property of V2O3/C composites was measured by differential scanning calorimetry (DSC), suggesting that V2O3/C composites exhibit the phase transition similar to V2O3, which could expand the potential applications of materials related to V2O3 in the future.

2011 ◽  
Vol 295-297 ◽  
pp. 368-372 ◽  
Author(s):  
Ya Lan Zhong ◽  
Yi Fu Zhang ◽  
Xin Liu ◽  
Xing Hai Liu ◽  
Chi Huang ◽  
...  

VO2(A) nanobelts have been synthesized using V2O5, H2O2, ethanol, H2O as the starting materials through a facile hydrothermal method. The as-obtained products were characterized by X-ray powder diffraction (XRD), X-ray photoelecton spectroscopy (XPS), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). Some parameters, such as, the reaction time, reaction temperature and the ratio of EtOH/H2O, have greatly influenced on the phases and morphologies of the final products. It was found that VO2(A) can be converted to VO2(M) at 700 °C for 2 h for the first time. Furthermore, the phase transition properties of VO2(A) and VO2(M) phases were respectively studied.


Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.


2019 ◽  
Vol 1 (4) ◽  
pp. 1581-1588 ◽  
Author(s):  
S. I. Sadovnikov ◽  
E. Yu. Gerasimov

For the first time, the α-Ag2S (acanthite)–β-Ag2S (argentite) phase transition in a single silver sulfide nanoparticles has been observed in situ using a high-resolution transmission electron microscopy method in real time.


2014 ◽  
Vol 28 (06) ◽  
pp. 1450045 ◽  
Author(s):  
Arbab Mohammad Toufiq ◽  
Fengping Wang ◽  
Qurat-ul-Ain Javed ◽  
Yan Li

In this paper, single crystalline 1D tetragonal MnO 2 pen-type nanorods were synthesized by varying the dwell time through a facile hydrothermal route at a reaction temperature of 250°C. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the diameter of MnO 2 nanorods decreases from 460 nm to 250 nm with the increase in hydrothermal reaction time from 5 h to 15 h. Field-emission scanning electron microscopy (FESEM) and TEM studies revealed the evolution of improved surface morphology of MnO 2 nanorods that are prepared with longer hydrothermal reaction time. The magnetic properties of the products were evaluated using vibrating sample magnetometer (VSM) at room temperature, which showed that the as-prepared samples exhibit weak ferromagnetic behavior. The effect of diameter on the magnetization values was observed and discussed in detail.


2013 ◽  
Vol 320 ◽  
pp. 483-487 ◽  
Author(s):  
Ming Li ◽  
Deng Bing Li ◽  
Jing Pan ◽  
Guang Hai Li

W-doped VO2 (B) nanoneedles were successfully synthesized by solgel combing with hydrothermal treatment, in which the polyethylene glycol (PEG) was used as both surfactant and reducing. The metastable VO2 (B) was completely transformed to thermochromic VO2 (M) after annealing at high purity N2 atmosphere. The DSC results exhibit a strong crystallographic transition, and the phase transition temperature of VO2 (M) can be reduced to about 38 °C by W-doping. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) were used to characterize the morphology and crystalline structure of the samples. The variable-temperature infrared transmittance spectra of VO2 (M) demonstrate their potential applications in energy saving field.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Xiaozhou Su ◽  
Lei Li ◽  
Weihan Huang

Complex nanomicelles were prepared by sericin and type A gelatin with molecular weight of 5789 Da and 128664 Da separately. The assembling conditions were as follows: mass ratio (sericin/gelatin) was 1 : 1, protein concentration was 0.5%, temperature was 35°C, and assembling time was 18 hours. Scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and dynamic light scattering (DLS) were conducted to observe and characterize the complex nanomicelles. Results showed that the complex sericin/gelatin micelles was a kind of nanospindle micelles. The micelles had high electrochemical stability, thermal stability, antidilution stability, and storage stability.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Rijing Wang ◽  
Xiaohong Wang ◽  
Xiaoguang Xi ◽  
Ruanbing Hu ◽  
Guohua Jiang

A simple sol-gel method was used to prepare magnetic Fe3O4/SiO2/TiO2composites with core-shell structure. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) have been applied to investigate the structure and morphology of the resultant composites. The obtained composites showed excellent magnetism and higher photodegradation ability than pure TiO2. The photocatalytic mechanism was also discussed. The magnetic composites should be extended to various potential applications, such as photodegradation, catalysis, separation, and purification processes.


2019 ◽  
Vol 15 (1) ◽  
pp. 155-174
Author(s):  
Govindharajan Sribala ◽  
Balakrishnan Meenarathi ◽  
Ramasamy Anbarasan

Thermally stable polyimides (PIs) were prepared by condensation technique at 160 ºC for 5 hours in N-methylpyrrolidone (NMP) medium under N2 atmosphere both in the presence and absence of metal (Ag) and metaloxide (MO) (V2O5) nanoparticles (NPs). The synthesized polymers are characterized by Fourier Transform Infra Red (FT-IR) spectroscopy, 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy, Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray (FE-SEM and EDX). The FT-IR spectrum showed a peak at 1786 cm-1 corresponding to the C=O stretching of dianhydride. The aromatic proton signals appeared between 6.7 and 7.5 ppm in the 1H-NMR spectrum of the resultant PIs. The oxydianiline (ODA) based PI with Ag NP loaded system exhibited the highest Tg value. The apparent rate constant values for the adsorption and catalytic reduction of p-nitrophenol (PNP), Cr6+ and rhodamine 6G (R6G) dye were determined with the help of UV-visible spectrophotometer. Among the catalysts, the system loaded with V2O5 NP has higher kapp values. The experimental results are critically analyzed and compared with the previously available literature values. Copyright © 2020 BCREC Group. All rights reserved 


2013 ◽  
Vol 873 ◽  
pp. 603-611
Author(s):  
Yi Long Yang ◽  
Jin Shu Wang ◽  
Yong Li Li ◽  
Jun Shu Wu ◽  
Hong Yi Li

We reported a facile hydrothermal route for the preparation of WO3TiO2 composite nanoparticles (TWCNs) using waste WC-TiC hardmetal in the presence of hydrofluoric acid (HF). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and nitrogen adsorption/desorption analysis were employed for structural and composition analyses of the TWCNs. Our results suggested that HF was not only strongly involved in the growth of WO3, but also played a critical role in the etching effect for TWCN product. The photocatalytic activity of TWCNs was investigated by UV-vis spectroscopy. Dye molecules could be rapidly decomposed with TWCNs photocatalyst under visible light illumination. The enhanced photocatalytic activity is attributed to well matched band edge positions of WO3 and TiO2, and the large specific surface area of TWCNs in view of the incorporation of mesopores. The results presented here are expected to make a contribution toward the development of recycling waste resource delicately for photocatalytic water purification.


2012 ◽  
Vol 200 ◽  
pp. 220-225
Author(s):  
Yi Fu Zhang ◽  
Mei Juan Fan ◽  
Chi Huang ◽  
Xing Hai Liu ◽  
Xin Liu ◽  
...  

The first–order metal–sinsulator phase transition in VO2 is characterized by an ultrafast several orders of magnitude change in optical transmittance and electrical conductivity, which makes VO2 an attractive candidate for the potential application in thermochromic coatings and functional packaging materials. Herein, W– and Mo–doped VO2 nanobelts were successfully synthesized by a facile hydrothermal method. The as–obtained products were characterized by X–ray powder diffraction (XRD), X–ray photoelecton spectroscopy (XPS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT–IR). The results revealed that W or Mo atoms were successfully doped into the crystal lattice of VO2 matrix. It was found that the phase transition temperature of doped VO2 could be simply tuned by changing the doping concentration of W or Mo atoms. Furthermore, the variable–temperature infrared spectra disclosed that the doped VO2(M) had novel optical switching properties, indicating that the as–obtained products can be used as the intelligent packaging materials.


Sign in / Sign up

Export Citation Format

Share Document