scholarly journals The Mystery of the Fifth Logical Notion (Alice in the Wonderful Land of Logical Notions)

Studia Humana ◽  
2020 ◽  
Vol 9 (3-4) ◽  
pp. 19-36
Author(s):  
Jean-Yves Beziau

AbstractWe discuss a theory presented in a posthumous paper by Alfred Tarski entitled “What are logical notions?”. Although the theory of these logical notions is something outside of the main stream of logic, not presented in logic textbooks, it is a very interesting theory and can easily be understood by anybody, especially studying the simplest case of the four basic logical notions. This is what we are doing here, as well as introducing a challenging fifth logical notion. We first recall the context and origin of what are here called Tarski-Lindenbaum logical notions. In the second part, we present these notions in the simple case of a binary relation. In the third part, we examine in which sense these are considered as logical notions contrasting them with an example of a nonlogical relation. In the fourth part, we discuss the formulations of the four logical notions in natural language and in first-order logic without equality, emphasizing the fact that two of the four logical notions cannot be expressed in this formal language. In the fifth part, we discuss the relations between these notions using the theory of the square of opposition. In the sixth part, we introduce the notion of variety corresponding to all non-logical notions and we argue that it can be considered as a logical notion because it is invariant, always referring to the same class of structures. In the seventh part, we present an enigma: is variety formalizable in first-order logic without equality? There follow recollections concerning Jan Woleński. This paper is dedicated to his 80th birthday. We end with the bibliography, giving some precise references for those wanting to know more about the topic.

2018 ◽  
Vol 16 (3) ◽  
pp. 5-15
Author(s):  
V. V. Tselishchev

The application of game-theoretic semantics for first-order logic is based on a certain kind of semantic assumptions, directly related to the asymmetry of the definition of truth and lies as the winning strategies of the Verifier (Abelard) and the Counterfeiter (Eloise). This asymmetry becomes apparent when applying GTS to IFL. The legitimacy of applying GTS when it is transferred to IFL is based on the adequacy of GTS for FOL. But this circumstance is not a reason to believe that one can hope for the same adequacy in the case of IFL. Then the question arises if GTS is a natural semantics for IFL. Apparently, the intuitive understanding of negation in natural language can be explicated in formal languages in various ways, and the result of an incomplete grasp of the concept in these languages can be considered a certain kind of anomalies, in view of the apparent simplicity of the explicated concept. Comparison of the theoretical-model and game theoretic semantics in application to two kinds of language – the first-order language and friendly-independent logic – allows to discover the causes of the anomaly and outline ways to overcome it.


1992 ◽  
Vol 57 (4) ◽  
pp. 1176-1197 ◽  
Author(s):  
Gisèle Fischer Servi

Research in AI has recently begun to address the problems of nondeductive reasoning, i.e., the problems that arise when, on the basis of approximate or incomplete evidence, we form well-reasoned but possibly false judgments. Attempts to stimulate such reasoning fall into two main categories: the numerical approach is based on probabilities and the nonnumerical one tries to reconstruct nondeductive reasoning as a special type of deductive process. In this paper, we are concerned with the latter usually known as nonmonotonic deduction, because the set of theorems does not increase monotonically with the set of axioms.It is generally acknowledged that nonmonotonic (n.m.) formalisms (e.g., [C], [MC1], [MC2] [MD], [MD-D], [Rl], [R2], [S]) are plagued by a number of difficulties. A key issue concerns the fact that most systems do not produce an axiomatizable set of validities. Thus, the chief objective of this paper is to develop an alternative approach in which the set of n.m. inferences, which somehow qualify as being deductively sound, is r.e.The basic idea here is to reproduce the situation in First Order Logic where the metalogical concept of deduction translates into the logical notion of material implication. Since n.m. deductions are no longer truth preserving, our way to deal with a change in the metaconcept is to extend the standard logic apparatus so that it can reflect the new metaconcept. In other words, the intent is to study a concept of nonmonotonic implication that goes hand in hand with a notion of n.m. deduction. And in our case, it is convenient that the former be characterized within the more tractable context of monotonic logic.


2019 ◽  
Vol 12 (2) ◽  
pp. 271-295
Author(s):  
ALEXANDER PASEAU

AbstractFirst-order formalisations are often preferred to propositional ones because they are thought to underwrite the validity of more arguments. We compare and contrast the ability of some well-known logics—these two in particular—to formally capture valid and invalid arguments. We show that there is a precise and important sense in which first-order logic does not improve on propositional logic in this respect. We also prove some generalisations and related results of philosophical interest. The rest of the article investigates the results’ philosophical significance. A first moral is that the correct way to state the oft-cited superiority of first-order logic vis-à-vis propositional logic is more nuanced than often thought. The second moral concerns semantic theory; the third logic’s use as a tool for discovery. A fourth and final moral is that second-order logic’s transcendence of first-order logic is greater than first-order logic’s transcendence of propositional logic.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


1991 ◽  
Vol 15 (2) ◽  
pp. 123-138
Author(s):  
Joachim Biskup ◽  
Bernhard Convent

In this paper the relationship between dependency theory and first-order logic is explored in order to show how relational chase procedures (i.e., algorithms to decide inference problems for dependencies) can be interpreted as clever implementations of well known refutation procedures of first-order logic with resolution and paramodulation. On the one hand this alternative interpretation provides a deeper insight into the theoretical foundations of chase procedures, whereas on the other hand it makes available an already well established theory with a great amount of known results and techniques to be used for further investigations of the inference problem for dependencies. Our presentation is a detailed and careful elaboration of an idea formerly outlined by Grant and Jacobs which up to now seems to be disregarded by the database community although it definitely deserves more attention.


2019 ◽  
Vol 29 (8) ◽  
pp. 1311-1344 ◽  
Author(s):  
Lauri T Hella ◽  
Miikka S Vilander

Abstract We propose a new version of formula size game for modal logic. The game characterizes the equivalence of pointed Kripke models up to formulas of given numbers of modal operators and binary connectives. Our game is similar to the well-known Adler–Immerman game. However, due to a crucial difference in the definition of positions of the game, its winning condition is simpler, and the second player does not have a trivial optimal strategy. Thus, unlike the Adler–Immerman game, our game is a genuine two-person game. We illustrate the use of the game by proving a non-elementary succinctness gap between bisimulation invariant first-order logic $\textrm{FO}$ and (basic) modal logic $\textrm{ML}$. We also present a version of the game for the modal $\mu $-calculus $\textrm{L}_\mu $ and show that $\textrm{FO}$ is also non-elementarily more succinct than $\textrm{L}_\mu $.


Sign in / Sign up

Export Citation Format

Share Document