scholarly journals Penentuan Notasi Gamelan Rindik Menggunakan Metode Transformasi Wavelet

2018 ◽  
Vol 17 (3) ◽  
pp. 319
Author(s):  
I Gusti Made Meri Utama Yasa ◽  
Linawati Linawati ◽  
N Paramaita

Abstract—This paper present about recognition of gamelan rindik pattern using wavelet transform. Wavelet transform is used to find the special characteristic of gamelan rindik, which had previously been recorded and stored in computer with format *.wav. The data was subsequently used as training and tested data, Probabilistic Neural Network (PNN) was used to recognize gamelan rindik pattern using. The training and tasted data process used four different rindics, consisting 0f 240 gamelan rindik data. Discrete Wavelet Transform (DWT) was used as the method of feature extraction, with Symlet, Haar, and Daubechies Wavelet function. Those three functions of the wavelet  shows the average accuracy level for Symlet 94.58%, Haar 93.33%, and wavelet Daubechies 94.58%.

2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


Author(s):  
A. B. M. Aowlad Hossain ◽  
Md. Wasiur Rahman ◽  
Manjurul Ahsan Riheen

Electroencephalogram (EEG) signals have great importance in the area of brain-computer interface (BCI) which has diverse applications ranging from medicine to entertainment. BCI acquires brain signals, extracts informative features and generates control signals from the knowledge of these features for functioning of external devices. The objective of this work is twofold. Firstly, to extract suitable features related to hand movements and secondly, to discriminate the left and right hand movements signals finding effective classifier. This work is a continuation of our previous study where beta band was found compatible for hand movement analysis. The discrete wavelet transform (DWT) has been used to separate beta band of the EEG signal in order to extract features.  The performance of a probabilistic neural network (PNN) is investigated to find better classifier of left and right hand movements EEG signals and compared with classical back propagation based neural network. The obtained results shows that PNN (99.1%) has better classification rate than the BP (88.9%). The results of this study are expected to be helpful in brain computer interfacing for hand movements related bio-rehabilitation applications.


Author(s):  
Januar Adi Putra ◽  
Nanik Suciati ◽  
Arya Yudhi Wijaya

[Id]Local binary pattern adalah sebuah kode biner yang menggambarkan pola tekstur lokal. Hal ini dibangun dengan lingkungan batas dengan nilai abu-abu dari pusatnya. Local binary pattern tradisional memiliki beberapa kelemahan yakni varian terhadap rotasi dan pada saat proses thresholding pixel sensitif terhadap noise. Pada penelitian ini diusulkan sebuah metode ektraksi fitur baru untuk mengatasi masalah tersebut, metode tersebut disebut full neighbour local binary pattern (fnlbp). Metode ini nantinya akan dikombinasikan dengan discrete wavelet transform untuk ektraksi fitur dari citra mammogram dengan metode klasifikasi adalah Backpropagation Neural Network (BPNN). Berdasar ujicoba yang telah dilakukan metode usulan mendapatkan rata-rata akurasi yang lebih baik daripada metode local binary pattern tradisional baik yang dikombinasi dengan discrete wavelet transform ataupun tidak. Performa metode usulan full neighbour local binary pattern dapat menghasilkan akurasi yang sempurna yakni 100% baik pada saat menggunakan discrete wavelet transform ataupun tidak, sedangkan akurasi terendah yang didapat adalah 90.49%.Kata Kunci: Ekstraksi fitur, local binary pattern, wavelet, klasifikasi mammogram.[En]Traditional local binary pattern have some disadvantages which is a variant of the rotation and during the thresholding process the pixel is sensitive to noise. At this study the authors proposed a new method of features extraction to solve that problem and this method called full neighbor local binary pattern (fnlbp). This method will be combined with discrete wavelet transform to extract the features of the mammogram image and the classification method is Backpro- pagation Neural Network (BPNN). Based on experiments the result of proposed method in an average accuracy is better than traditional methods of local binary pattern which combined with discrete wavelet transform or not. The performance of the proposed method of full neighbor local binary pattern can produce perfect accuracy that is 100%, this accuracy is reached when using discrete wavelet transform or not, while the lowest accuracy obtained is 90.49%.


Sign in / Sign up

Export Citation Format

Share Document