scholarly journals Role of Pterostilbene in Metabolic Diseases through SIRT1 pathway- A Review

Author(s):  
Rashmi Patil ◽  
Urmila Aswar

Pterostilbene (PTE) (3-5 dimethoxy-4-hydroxy-trans-stilbenes) is an analogue of resveratrol. It is extracted and isolated from a natural source of the heartwood of Pterocarpus marsupium Roxb., red grape skin, and blueberries (Vaccinium spp.). Substantial evidence suggested that PTE displayed numerous preventive and therapeutic properties in many metabolic disorders such as diabetes and obesity. Metabolic diseases result in Insulin resistance (IR) which advances to impaired sensitivity to insulin-mediated glucose disposal. The prominent role of SIRT (silent information regulator proteins) is now getting emphasized in metabolic disorders. SIRT1 represses Uncoupling protein 2 (UCP2) expressions which are further responsible for improving synthesis of ATP from glucose. This results in improving glucose utilization and insulin secretion, thus preventing IR. SIRT1 also exhibits prominent role in facilitating fatty acid mobilization thereby inhibiting adiposity. Metabolic disorders are therefore the consequences of SIRT1 downregulation. Pterostilbene, being a SIRT1 activator, increases insulin sensitivity reduces adiposity, therefore can prove to be beneficial in diabetes as well as obesity. The review summarizes therapeutic effects portrayed by Pterostilbene via the SIRT1 pathway in metabolic diseases.

Antioxidants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 74 ◽  
Author(s):  
Christian Carpéné ◽  
Francisco Les ◽  
Guillermo Cásedas ◽  
Cécile Peiro ◽  
Jessica Fontaine ◽  
...  

Studies in animal models of diabetes and obesity have shown that resveratrol mitigates complications of metabolic diseases, beyond those resulting from oxidative stress. Furthermore, results obtained with cultured preadipocytes have also revealed that prolonged resveratrol treatment impairs adipogenesis. Considering the role of adipocytes in the hypertrophy of fat stores, and keeping in mind that insulin is the main trigger of excessive energy storage during post-prandial periods, the present study aimed to investigate how short-term effects of resveratrol can limit glucose disposal in a gut-adipose tissue axis. We found that resveratrol exhibits a more potent inhibitory capacity towards α-glucosidase than pancreatic lipase activity. Resveratrol also rapidly blunts glucose transport in mature fat cells by counteracting the effect of insulin and insulin-like lipogenic agents. Within two hours, resveratrol also inhibited the incorporation of glucose into lipids of adipocytes, which was unaffected by membrane cholesterol depletion. Moreover, the comparison between adipocytes with invalidated semicarbazide-sensitive amine oxidase activity and their control, or between resveratrol and several inhibitors, did not indicate that the recently described interaction of resveratrol with amine oxidases was involved in its antilipogenic effect. Caffeine and piceatannol, previously said to interact with glucose carriers, also inhibit lipogenesis in adipocytes, whereas other antioxidant phytochemicals do not reproduce such an antilipogenic effect. This study highlights the diverse first steps by which resveratrol impairs excessive fat accumulation, indicating that this natural molecule and its derivatives deserve further studies to develop their potential anti-obesity properties.


2019 ◽  
Vol 9 (5-s) ◽  
pp. 167-169
Author(s):  
Dhananjay S. Khot

The metabolic disorders are major health issues of today’s scenario and incidences of metabolic diseases increases day by day due to the disturbed pattern of life style. Ayurveda texts have described term “Santarpanjanya Vikaras” which resembles diseases of defective tissue metabolism. Ayurveda mentioned that improper dietary habits and sedentary life style affects state of Agni which resulted Ama production and finally leading to the metabolic syndrome. The vitiation of Dosha, diminish state of Dhatu and blockage of channels, etc. also can initiate pathogenesis of metabolic disorders. The Kayachikitsa branch of Ayurveda recommended use of internal medicine for the management of various metabolic disorders. Considering increased health burden of society due to the metabolic syndrome present article explore role of ayurveda internal medicine for the management of metabolic syndrome. Keywords: Ayurveda, metabolic syndrome, Santarpanjanya, Madhumeha and Sthoulya.       


2019 ◽  
Vol 16 (2) ◽  
pp. 351-357
Author(s):  
Sunil Raina ◽  
Roopali Fotra

Diabetes Mellitus is a group of metabolic disorders characterized by hyperglycaemic resulting from the defects of insulin secretion, insulin action or both. The present study was conducted in order to know the molecular genetic cause of the T2DM patients belonging to the Jammu region of J&K State. Many genes have been known to be linked with the onset and progression of the T2DM therefore the present data represents the role of one of the genes Uncoupling protein 2 (UCP2) known to be strongly associated with T2DM was selected. A total of 250 confirmed cases & controls samples belonging to four population groups (Hindu, Muslim, Sikh & Christians) of Jammu region were also screened for UCP2 -866G/A promoter polymorphism (rs659366). The allelic odds ratio (OR) as observed for UCP2 -866G/A polymorphism in the four population groups showed significant association with Muslim & Sikh population groups. The study undertaken supports the findings of the previous investigations and thus is an addition to the existing literatute in support of UCP2 and T2DM.


2019 ◽  
Vol 317 (6) ◽  
pp. E1205-E1217 ◽  
Author(s):  
Siyuan Cui ◽  
Lu Qiao ◽  
Shanshan Yu ◽  
Lili Men ◽  
Yu Li ◽  
...  

Interleukin-8 (IL-8, also named CXCL8) binds to its receptors (CXCR1 and CXCR2) with subsequent recruitment of neutrophils and enhancement of their infiltration into inflamed sites, which exaggerates inflammation in many diseases. Recent studies have proposed that metabolic disorders can be attenuated by counteracting certain inflammatory signal pathways. In this study, we examined whether intervention with G31P, an antagonist of CXCL8, could attenuate tissue inflammation and development of metabolic disorders in db/db mice. The db/m and db/db mice were subcutaneously injected with G31P or equivalent normal saline once a day for 6 wk. The physical and metabolic parameters, glucose tolerance, insulin sensitivity, hepatic lipid accumulation, and inflammation markers were measured. G31P improved hepatic insulin sensitivity by modulating expression of genes related to gluconeogenesis and phosphorylated Akt levels. The expressions of several genes encoding proteins involved in de novo lipogenesis were decreased in G31P-treated db/db mice. Meanwhile, immune cell infiltration and cytokine release were attenuated in db/db mice with G31P treatment. G31P also improved the ratio of proinflammatory M1 and anti-inflammatory M2 macrophages. Furthermore, G31P ameliorates metabolic disturbances via inhibition of CXCR1 and CXCR2 pathways in db/db mice. These data suggest that the selective inhibition of CXC chemokines may have therapeutic effects on symptoms associated with obesity and diabetes.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2182 ◽  
Author(s):  
Oliver K Fuller ◽  
Martin Whitham ◽  
Suresh Mathivanan ◽  
Mark A Febbraio

Physical activity has systemic effects on the body, affecting almost every organ. It is important not only for general health and wellbeing, but also in the prevention of diseases. The mechanisms behind the therapeutic effects of physical activity are not completely understood; however, studies indicate these benefits are not confined to simply managing energy balance and body weight. They also include systemic factors which are released into the circulation during exercise and which appear to underlie the myriad of benefits exercise can elicit. It was shown that along with a number of classical cytokines, active tissues also engage in inter-tissue communication via extracellular vesicles (EVs), specifically exosomes and other small EVs, which are able to deliver biomolecules to cells and alter their metabolism. Thus, EVs may play a role in the acute and systemic adaptations that take place during and after physical activity, and may be therapeutically useful in the treatment of a range of diseases, including metabolic disorders such as type 2 diabetes and obesity; and the focus of this review, neurological disorders such as Alzheimer’s disease.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2220
Author(s):  
Ramachandran Chelliah ◽  
Shuai Wei ◽  
Eric Banan-Mwine Daliri ◽  
Fazle Elahi ◽  
Su-Jung Yeon ◽  
...  

Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts bioactive peptides and protein sequences produced through proteolysis or food processing. Unique food protein fragments can improve human health and avoid metabolic diseases, inflammation, hypertension, obesity, and diabetes mellitus. This review focuses on drug targets and fundamental mechanisms of bioactive peptides on metabolic syndromes, namely obesity and type 2 diabetes, to provide new ideas and knowledge on the ability of bioactive peptide to control metabolic syndromes.


2018 ◽  
Vol 24 (15) ◽  
pp. 1711-1716 ◽  
Author(s):  
Elena V. Galitsyna ◽  
Andrey V. Zhelankin ◽  
Igor A. Sobenin ◽  
Alexander N. Orekhov

In addition to external factors, such as exercise, food and the environment, genetic predisposition makes great contribution to the development of metabolic disorders and cardiovascular disease. This review is aimed to examine the genetic basis of complex metabolic disorders conventionally described as "metabolic syndrome" (MetS), with the special focus on currently known mutations in the nuclear and mitochondrial genomes, which are associated with both the individual components of MetS and combinations thereof, and also on the studies of the relationship of MetS phenotype as a binary trait. The defects in the mitochondrial genome should be considered as one of the possible genetic reasons leading to MetS. It is known that mitochondrial dysfunction is closely associated with metabolic disorders, as mitochondria are the center of energy metabolism. Consequently, the changes in mitochondrial genes and their functions affect regulation of metabolism. Until now, the role of mitochondrial DNA damage in the development of cardiovascular diseases, age-related and metabolic disorders is still poorly understood. The results of performed studies would help assessing the role of mitochondrial DNA mutations in susceptibility to metabolic syndrome and related metabolic diseases.


2019 ◽  
Vol 19 (19) ◽  
pp. 1611-1626 ◽  
Author(s):  
Xiang-Li Bai ◽  
Xiu-Ling Deng ◽  
Guang-Jie Wu ◽  
Wen-Jing Li ◽  
Si Jin

Over the past three decades, the knowledge gained about the mechanisms that underpin the potential use of Rhodiola in stress- and ageing-associated disorders has increased, and provided a universal framework for studies that focused on the use of Rhodiola in preventing or curing metabolic diseases. Of particular interest is the emerging role of Rhodiola in the maintenance of energy homeostasis. Moreover, over the last two decades, great efforts have been undertaken to unravel the underlying mechanisms of action of Rhodiola in the treatment of metabolic disorders. Extracts of Rhodiola and salidroside, the most abundant active compound in Rhodiola, are suggested to provide a beneficial effect in mental, behavioral, and metabolic disorders. Both in vivo and ex vivo studies, Rhodiola extracts and salidroside ameliorate metabolic disorders when administered acutely or prior to experimental injury. The mechanism involved includes multi-target effects by modulating various synergistic pathways that control oxidative stress, inflammation, mitochondria, autophagy, and cell death, as well as AMPK signaling that is associated with possible beneficial effects on metabolic disorders. However, evidence-based data supporting the effectiveness of Rhodiola or salidroside in treating metabolic disorders is limited. Therefore, a comprehensive review of available trials showing putative treatment strategies of metabolic disorders that include both clinical effective perspectives and fundamental molecular mechanisms is warranted. This review highlights studies that focus on the potential role of Rhodiola extracts and salidroside in type 2 diabetes and atherosclerosis, the two most common metabolic diseases.


2020 ◽  
Vol 16 ◽  
Author(s):  
Ana Valéria Garcia Ramirez ◽  
Durval Ribas Filho ◽  
Larissa Bianca Paiva Cunha de Sá ◽  
Alberto Krayyem Arbex

Significance: Obesity is a multifactorial disease with many risks to public health, affecting 39.6% of American adults and 18.5% of young people. Brazil ranks fifth in the world ranking, with about 18 million obese people. It is estimated that 415 million people live with diabetes in the world, which is roughly 1 in 11 of the world's adult population. This is expected to rise to 642 million people living with diabetes worldwide by 2040. In this scenario, Melatonin has evidenced an important function in the regulation of energy metabolism. Objective: to carry out a broad narrative review of the literature on the main aspects of the influence of melatonin on Diabetes Mellitus and obesity. Methods: Article reviews, systematic reviews, prospective studies, retrospective studies, randomized, double-blind, placebo-controlled trials in humans recently published were selected and analyzed. A total of 368 articles were collated and submitted to the eligibility analysis. Subsequently, 215 studies were selected to compose the textual part of the manuscript and 153 to compose the Narrative Review. Results and final considerations: Studies suggest a possible role of melatonin in metabolic diseases such as obesity, T2DM and metabolic syndrome. Intervention studies using this hormone in metabolic diseases are still unclear regarding a possible benefit of it. There is so far no consensus about a possible role of melatonin as an adjuvant in the treatment of metabolic diseases. More studies are necessary to define possible risks and benefits of melatonin as a therapeutic agent.


2021 ◽  
Author(s):  
Gu-Choul Shin ◽  
Hyeong Min Lee ◽  
Na Yeon Kim ◽  
Sang-Ku Yoo ◽  
Yun Sun Park ◽  
...  

AbstractLimited therapeutic agents have been developed for non-alcoholic steatohepatitis (NASH), a common immunometabolic disease that can progress to hepatic cirrhosis and cancer. Glabridin and its derivatives are potential therapeutics for some metabolic diseases. However, the therapeutic effects of glabridin and its derivatives on NASH and their biological functions are unclear. This study demonstrated the role of synthetic glabridin derivatives (SGDs) in alleviating hepatic steatosis and inflammation in a biopsy-confirmed rodent NASH model. SGDs exerted therapeutic effects by activating autophagy and the antioxidant defense system, which mitigate NASH pathogenesis. The cellular target of HSG4112, an SGD, was paraoxonase 2. These findings will enable the development of novel therapeutics for NASH in the future.


Sign in / Sign up

Export Citation Format

Share Document