scholarly journals Generating Multiple Diverse Responses with Multi-Mapping and Posterior Mapping Selection

Author(s):  
Chaotao Chen ◽  
Jinhua Peng ◽  
Fan Wang ◽  
Jun Xu ◽  
Hua Wu

In human conversation an input post is open to multiple potential responses, which is typically regarded as a one-to-many problem. Promising approaches mainly incorporate multiple latent mechanisms to build the one-to-many relationship. However, without accurate selection of the latent mechanism corresponding to the target response during training, these methods suffer from a rough optimization of latent mechanisms. In this paper, we propose a multi-mapping mechanism to better capture the one-to-many relationship, where multiple mapping modules are employed as latent mechanisms to model the semantic mappings from an input post to its diverse responses. For accurate optimization of latent mechanisms, a posterior mapping selection module is designed to select the corresponding mapping module according to the target response for further optimization. We also introduce an auxiliary matching loss to facilitate the optimization of posterior mapping selection. Empirical results demonstrate the superiority of our model in generating multiple diverse and informative responses over the state-of-the-art methods.

2021 ◽  
Vol 9 ◽  
pp. 557-569
Author(s):  
Lizi Liao ◽  
Le Hong Long ◽  
Yunshan Ma ◽  
Wenqiang Lei ◽  
Tat-Seng Chua

Abstract Tracking dialogue states to better interpret user goals and feed downstream policy learning is a bottleneck in dialogue management. Common practice has been to treat it as a problem of classifying dialogue content into a set of pre-defined slot-value pairs, or generating values for different slots given the dialogue history. Both have limitations on considering dependencies that occur on dialogues, and are lacking of reasoning capabilities. This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data. Empirical results demonstrate that our method outperforms the state-of-the-art methods in terms of joint belief accuracy for MultiWOZ 2.1, a large-scale human--human dialogue dataset across multiple domains.


1967 ◽  
Vol 71 (677) ◽  
pp. 342-343
Author(s):  
F. H. East

The Aviation Group of the Ministry of Technology (formerly the Ministry of Aviation) is responsible for spending a large part of the country's defence budget, both in research and development on the one hand and production or procurement on the other. In addition, it has responsibilities in many non-defence fields, mainly, but not exclusively, in aerospace.Few developments have been carried out entirely within the Ministry's own Establishments; almost all have required continuous co-operation between the Ministry and Industry. In the past the methods of management and collaboration and the relative responsibilities of the Ministry and Industry have varied with time, with the type of equipment to be developed, with the size of the development project and so on. But over the past ten years there has been a growing awareness of the need to put some system into the complex business of translating a requirement into a specification and a specification into a product within reasonable bounds of time and cost.


2017 ◽  
Vol 2 (1) ◽  
pp. 299-316 ◽  
Author(s):  
Cristina Pérez-Benito ◽  
Samuel Morillas ◽  
Cristina Jordán ◽  
J. Alberto Conejero

AbstractIt is still a challenge to improve the efficiency and effectiveness of image denoising and enhancement methods. There exists denoising and enhancement methods that are able to improve visual quality of images. This is usually obtained by removing noise while sharpening details and improving edges contrast. Smoothing refers to the case of denoising when noise follows a Gaussian distribution.Both operations, smoothing noise and sharpening, have an opposite nature. Therefore, there are few approaches that simultaneously respond to both goals. We will review these methods and we will also provide a detailed study of the state-of-the-art methods that attack both problems in colour images, separately.


2017 ◽  
Vol 108 (1) ◽  
pp. 307-318 ◽  
Author(s):  
Eleftherios Avramidis

AbstractA deeper analysis on Comparative Quality Estimation is presented by extending the state-of-the-art methods with adequacy and grammatical features from other Quality Estimation tasks. The previously used linear method, unable to cope with the augmented features, is replaced with a boosting classifier assisted by feature selection. The methods indicated show improved performance for 6 language pairs, when applied on the output from MT systems developed over 7 years. The improved models compete better with reference-aware metrics.Notable conclusions are reached through the examination of the contribution of the features in the models, whereas it is possible to identify common MT errors that are captured by the features. Many grammatical/fluency features have a good contribution, few adequacy features have some contribution, whereas source complexity features are of no use. The importance of many fluency and adequacy features is language-specific.


2022 ◽  
Vol 134 ◽  
pp. 103548
Author(s):  
Bianca Caiazzo ◽  
Mario Di Nardo ◽  
Teresa Murino ◽  
Alberto Petrillo ◽  
Gianluca Piccirillo ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3603
Author(s):  
Dasol Jeong ◽  
Hasil Park ◽  
Joongchol Shin ◽  
Donggoo Kang ◽  
Joonki Paik

Person re-identification (Re-ID) has a problem that makes learning difficult such as misalignment and occlusion. To solve these problems, it is important to focus on robust features in intra-class variation. Existing attention-based Re-ID methods focus only on common features without considering distinctive features. In this paper, we present a novel attentive learning-based Siamese network for person Re-ID. Unlike existing methods, we designed an attention module and attention loss using the properties of the Siamese network to concentrate attention on common and distinctive features. The attention module consists of channel attention to select important channels and encoder-decoder attention to observe the whole body shape. We modified the triplet loss into an attention loss, called uniformity loss. The uniformity loss generates a unique attention map, which focuses on both common and discriminative features. Extensive experiments show that the proposed network compares favorably to the state-of-the-art methods on three large-scale benchmarks including Market-1501, CUHK03 and DukeMTMC-ReID datasets.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4534 ◽  
Author(s):  
Elżbieta Bogdan ◽  
Piotr Michorczyk

This paper describes the process of additive manufacturing and a selection of three-dimensional (3D) printing methods which have applications in chemical synthesis, specifically for the production of monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the field of catalysis. It was proven that 3D printing is a promising production method for catalysts.


Semiotica ◽  
2019 ◽  
Vol 2019 (228) ◽  
pp. 223-235
Author(s):  
Winfried Nöth

AbstractThe paper begins with a survey of the state of the art in multimodal research, an international trend in applied semiotics, linguistics, and media studies, and goes on to compare its approach to verbal and nonverbal signs to Charles S. Peirce’s approach to signs and their classification. The author introduces the concept of transmodality to characterize the way in which Peirce’s classification of signs reflects the modes of multimodality research and argues that Peirce’s classification of the signs takes modes and modalities in two different respects into consideration, (1) from the perspective of the sign and (2) from the one of its interpretant. While current research in multimodality has its focus on the (external) sign in a communicative process, Peirce considers additionally the multimodality of the interpretants, i.e., the mental icons and indexical scenarios evoked in the interpreters’ minds. The paper illustrates and comments on the Peircean method of studying the multi and transmodality of signs in an analysis of Peirce’s close reading of Luke 19:30 in MS 599, Reason’s Rules, of c. 1902. As a sign, this text is “monomodal” insofar as it consists of printed words only. The study shows in which respects the interpretants of this text evince trans and multimodality.


Author(s):  
Jianwen Jiang ◽  
Di Bao ◽  
Ziqiang Chen ◽  
Xibin Zhao ◽  
Yue Gao

3D shape retrieval has attracted much attention and become a hot topic in computer vision field recently.With the development of deep learning, 3D shape retrieval has also made great progress and many view-based methods have been introduced in recent years. However, how to represent 3D shapes better is still a challenging problem. At the same time, the intrinsic hierarchical associations among views still have not been well utilized. In order to tackle these problems, in this paper, we propose a multi-loop-view convolutional neural network (MLVCNN) framework for 3D shape retrieval. In this method, multiple groups of views are extracted from different loop directions first. Given these multiple loop views, the proposed MLVCNN framework introduces a hierarchical view-loop-shape architecture, i.e., the view level, the loop level, and the shape level, to conduct 3D shape representation from different scales. In the view-level, a convolutional neural network is first trained to extract view features. Then, the proposed Loop Normalization and LSTM are utilized for each loop of view to generate the loop-level features, which considering the intrinsic associations of the different views in the same loop. Finally, all the loop-level descriptors are combined into a shape-level descriptor for 3D shape representation, which is used for 3D shape retrieval. Our proposed method has been evaluated on the public 3D shape benchmark, i.e., ModelNet40. Experiments and comparisons with the state-of-the-art methods show that the proposed MLVCNN method can achieve significant performance improvement on 3D shape retrieval tasks. Our MLVCNN outperforms the state-of-the-art methods by the mAP of 4.84% in 3D shape retrieval task. We have also evaluated the performance of the proposed method on the 3D shape classification task where MLVCNN also achieves superior performance compared with recent methods.


Sign in / Sign up

Export Citation Format

Share Document