scholarly journals Type Anywhere You Want: An Introduction to Invisible Mobile Keyboard

Author(s):  
Sahng-Min Yoo ◽  
Ue-Hwan Kim ◽  
Yewon Hwang ◽  
Jong-Hwan Kim

Contemporary soft keyboards possess limitations: the lack of physical feedback results in an increase of typos, and the interface of soft keyboards degrades the utility of the screen. To overcome these limitations, we propose an Invisible Mobile Keyboard (IMK), which lets users freely type on the desired area without any constraints. To facilitate a data-driven IMK decoding task, we have collected the most extensive text-entry dataset (approximately 2M pairs of typing positions and the corresponding characters). Additionally, we propose our baseline decoder along with a semantic typo correction mechanism based on self-attention, which decodes such unconstrained inputs with high accuracy (96.0%). Moreover, the user study reveals that the users could type faster and feel convenience and satisfaction to IMK with our decoder. Lastly, we make the source code and the dataset public to contribute to the research community.

Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 48-56
Author(s):  
Max Pargmann ◽  
Daniel Maldonado Quinto ◽  
Peter Schwarzbözl ◽  
Robert Pitz-Paal

Author(s):  
Zezhou Zhang ◽  
Qingze Zou

Abstract In this paper, an optimal data-driven modeling-free differential-inversion-based iterative control (OMFDIIC) method is proposed for both high performance and robustness in the presence of random disturbances. Achieving high accuracy and fast convergence is challenging as the system dynamics behaviors vary due to the external uncertainties and the system bandwidth is limited. The aim of the proposed method is to compensate for the dynamics effect without modeling process and achieve both high accuracy and robust convergence, by extending the existed modeling-free differential-inversion-based iterative control (MFDIIC) method through a frequency- and iteration-dependent gain. The convergence of the OMFDIIC method is analyzed with random noise/disturbances considered. The developed method is applied to a wafer stage, and shows a significant improvement in the performance.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 452
Author(s):  
Qun Yang ◽  
Dejian Shen

Natural hazards have caused damages to structures and economic losses worldwide. Post-hazard responses require accurate and fast damage detection and assessment. In many studies, the development of data-driven damage detection within the research community of structural health monitoring has emerged due to the advances in deep learning models. Most data-driven models for damage detection focus on classifying different damage states and hence damage states cannot be effectively quantified. To address such a deficiency in data-driven damage detection, we propose a sequence-to-sequence (Seq2Seq) model to quantify a probability of damage. The model was trained to learn damage representations with only undamaged signals and then quantify the probability of damage by feeding damaged signals into models. We tested the validity of our proposed Seq2Seq model with a signal dataset which was collected from a two-story timber building subjected to shake table tests. Our results show that our Seq2Seq model has a strong capability of distinguishing damage representations and quantifying the probability of damage in terms of highlighting the regions of interest.


2021 ◽  
Vol 7 (4) ◽  
pp. 208
Author(s):  
Mor Peleg ◽  
Amnon Reichman ◽  
Sivan Shachar ◽  
Tamir Gadot ◽  
Meytal Avgil Tsadok ◽  
...  

Triggered by the COVID-19 crisis, Israel’s Ministry of Health (MoH) held a virtual datathon based on deidentified governmental data. Organized by a multidisciplinary committee, Israel’s research community was invited to offer insights to help solve COVID-19 policy challenges. The Datathon was designed to develop operationalizable data-driven models to address COVID-19 health policy challenges. Specific relevant challenges were defined and diverse, reliable, up-to-date, deidentified governmental datasets were extracted and tested. Secure remote-access research environments were established. Registration was open to all citizens. Around a third of the applicants were accepted, and they were teamed to balance areas of expertise and represent all sectors of the community. Anonymous surveys for participants and mentors were distributed to assess usefulness and points for improvement and retention for future datathons. The Datathon included 18 multidisciplinary teams, mentored by 20 data scientists, 6 epidemiologists, 5 presentation mentors, and 12 judges. The insights developed by the three winning teams are currently considered by the MoH as potential data science methods relevant for national policies. Based on participants’ feedback, the process for future data-driven regulatory responses for health crises was improved. Participants expressed increased trust in the MoH and readiness to work with the government on these or future projects.


Author(s):  
Gopalendu Pal ◽  
Anquan Wang ◽  
Michael F. Modest

k-distribution-based approaches are promising models for radiation calculations in strongly nongray participating media. Advanced k-distribution methods were found to achieve close-to benchmark line-by-line (LBL) accuracy for strongly inhomogeneous multi-phase media accompanied by several orders of magnitude smaller computational cost. In this paper, a k-distribution-based portable spectral module is developed, incorporating several state-of-the-art k-distribution methods along with compact and high-accuracy databases of k-distributions. The module construction is flexible — the user can choose among various k-distribution methods with their relevant k-distribution databases, to carry out accurate radiation calculations. The spectral module is portable, such that it can be coupled to any flow solver code with its own grid structure, discretization scheme, and solver libraries. This open source code module is made available for free for all noncommercial purposes. This article outlines in detail the design and the use of the spectral module. The k-distribution methods included in the module are briefly described with a discussion of their advantages, disadvantages and their domain of applicability. Examples are provided for various sample radiation calculations in multi-phase mixtures using the new spectral module and the results are compared with LBL calculations.


2020 ◽  
Author(s):  
Costas Mitsopoulos ◽  
Albert A. Antolin ◽  
Eloy Villasclaras Fernandez ◽  
Patrizio Di Micco ◽  
Ioan L. Micca ◽  
...  

<p>We describe an AI-enabled, integrated Coronavirus drug discovery knowledgebase, free for the research community. Its goal is to make accessible up to date information relevant to drug discovery for SARS-CoV-2 and other coronaviruses. It builds on great knowledge from across therapeutic areas and provides unbiased, systematic, objective information to empower the international effort.</p>


2017 ◽  
Author(s):  
Ji Zhou ◽  
Christopher Applegate ◽  
Albor Dobon Alonso ◽  
Daniel Reynolds ◽  
Simon Orford ◽  
...  

AbstractBackgroundPlants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch processing of image datasets, multiple trait analysis, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic.ResultsHere, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different platforms. To facilitate diverse scientific user communities, we provide three versions of the software, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and an interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat (Triticum aestivum) growth studies at the Norwich Research Park (NRP, UK). By quantifying growth phenotypes over time, we are able to identify diverse plant growth patterns based on a variety of key growth-related phenotypes under varied experimental conditions.As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices and still produced reliable biologically relevant outputs, we believe that our automated analysis workflow and customised computer vision based feature extraction algorithms can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, our software can not only contribute to biological research, but also exhibit how to utilise existing open numeric and scientific libraries (including Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, efficiently and effectively.ConclusionsLeaf-GP is a comprehensive software application that provides three approaches to quantify multiple growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and high-performance computing clusters (HPC), with open Python-based scientific libraries preinstalled. We share our modulated source code and executables (.exe for Windows; .app for Mac) together with this paper to serve the plant research community. The software, source code and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.


2021 ◽  
Vol 11 (20) ◽  
pp. 9680
Author(s):  
Xuan Zhou ◽  
Ruimin Ke ◽  
Hao Yang ◽  
Chenxi Liu

The widespread use of mobile devices and sensors has motivated data-driven applications that can leverage the power of big data to benefit many aspects of our daily life, such as health, transportation, economy, and environment. Under the context of smart city, intelligent transportation systems (ITS), such as a main building block of modern cities and edge computing (EC), as an emerging computing service that targets addressing the limitations of cloud computing, have attracted increasing attention in the research community in recent years. It is well believed that the application of EC in ITS will have considerable benefits to transportation systems regarding efficiency, safety, and sustainability. Despite the growing trend in ITS and EC research, a big gap in the existing literature is identified: the intersection between these two promising directions has been far from well explored. In this paper, we focus on a critical part of ITS, i.e., sensing, and conducting a review on the recent advances in ITS sensing and EC applications in this field. The key challenges in ITS sensing and future directions with the integration of edge computing are discussed.


Sign in / Sign up

Export Citation Format

Share Document