scholarly journals Analysis of the Force Response of a Double-Canopy Hydraulic Support under Impact Loads

2021 ◽  
Vol 20 (4) ◽  
pp. 766-777
Author(s):  
Z. S. Meng ◽  
J. M. Zhang ◽  
Y. Y. Xie ◽  
Z. G. Lu ◽  
Q. L. Zeng
Author(s):  
Qingliang Zeng ◽  
Kao Jiang ◽  
Kuidong Gao ◽  
Lirong Wan ◽  
Yang Yang ◽  
...  

Author(s):  
Suhua Li ◽  
Jiacheng Xie ◽  
Fang Ren ◽  
Xin Zhang ◽  
Xuewen Wang ◽  
...  

AbstractThe movement of the floating connecting mechanism between a hydraulic support and scraper conveyor is space movement; thus, when the hydraulic support pushes the scraper conveyor, there is an error between the actual distance of the scraper conveyor and the theoretical moving distance. As a result, the scraper conveyor cannot obtain the straightness requirement. Therefore, the movement law of the floating connecting mechanism between the hydraulic support and scraper conveyor is analyzed and programmed into the Unity3D to realize accurate pushing of the scraper conveyor via hydraulic support. The Coal Seam + Equipment Joint Virtual Straightening System is established, and a straightening method based on the motion law of a floating connection is proposed as the default method of the system. In addition, a straightening simulation of the scraper conveyor was performed on a complex coal seam floor, the results demonstrate that the average straightening error of the scraper conveyor is within 2–8 mm, and is in direct proportion to the fluctuation of the coal seam floor in the strike of the seam with high accuracy, the straightness of scraper conveyor is more affected by the subsidence terrain during straightening than by the bulge terrain. And some conclusions are verified by experiment. Based on the verification of the relevant conclusions, a comparison and analysis of Longwall Automation Steering Committee (LASC) straightening technology and default straightening method in the simulation system shows that the straightness accuracy of LASC straightening technology under complex floor conditions is slightly less than that of the default straightening method in the proposed system.


2020 ◽  
Vol 12 (1) ◽  
pp. 703-717
Author(s):  
Yin Wei ◽  
Wang Jiaqi ◽  
Bai Xiaomin ◽  
Sun Wenjie ◽  
Zhou Zheyuan

AbstractThis article analyzes the technical difficulties in full-section backfill mining and briefly introduces the technical principle and advantages of backfilling combined with caving fully mechanized mining (BCCFM). To reveal the strata behavior law of the BCCFM workface, this work establishes a three-dimensional numerical model and designs a simulation method by dynamically updating the modulus parameter of the filling body. By the analysis of numerical simulation, the following conclusions about strata behavior of the BCCFM workface were drawn. (1) The strata behavior of the BCCFM workface shows significant nonsymmetrical characteristics, and the pressure in the caving section is higher than that in the backfilling section. φ has the greatest influence on the backfilling section and the least influence on the caving section. C has a significant influence on the range of abutment pressure in the backfilling section. (2) There exits the transition area with strong mine pressure of the BCCFM workface. φ and C have significant effect on the degree of pressure concentration but little effect on the influence range of strong mine pressure in the transition area. (3) Under different conditions, the influence range of strong mine pressure is all less than 6 m. This article puts forward a control strategy of mine pressure in the transition area, which is appropriately improving the strength of the transition hydraulic support within the influence range (6 m) in the transition area according to the pressure concentration coefficient. The field measurement value of Ji15-31010 workface was consistent with numerical simulation, which verifies the reliability of control strategy of the BCCFM workface.


Sign in / Sign up

Export Citation Format

Share Document