AGRICULTURAL PRODUCTION OF CA DONG PEOPLE IN RESETTLEMENT AREA OF TRANH RIVER HYDROPOWER NUMBER 2: CURRENT SITUATION AND IMPACT FACTORS

2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Bùi Thị Bích Lan

In Vietnam, the construction of hydropower projects has contributed significantly in the cause of industrialization and modernization of the country. The place where hydropower projects are built is mostly inhabited by ethnic minorities - communities that rely primarily on land, a very important source of livelihood security. In the context of the lack of common productive land in resettlement areas, the orientation for agricultural production is to promote indigenous knowledge combined with increasing scientific and technical application; shifting from small-scale production practices to large-scale commodity production. However, the research results of this article show that many obstacles in the transition process are being posed such as limitations on natural resources, traditional production thinking or the suitability and effectiveness of scientific - technical application models. When agricultural production does not ensure food security, a number of implications for people’s lives are increasingly evident, such as poverty, preserving cultural identity, social relations and resource protection. Since then, it has set the role of the State in researching and building appropriate agricultural production models to exploit local strengths and ensure sustainability.

2020 ◽  
Vol 175 ◽  
pp. 10008
Author(s):  
Thi Hoai Nguyen ◽  
Duc Luan Nguyen

In this paper, the authors analyze the current situation of agricultural production in Vietnam and affirm that fragmentation is one of the basic causes leading to ineffective potentials and low labor productivity. Based on this, the authors propose a number of solutions to convert small-scale production to large-scale production in order to improve labor productivity and optimally exploit resources in the agricultural sector in Vietnam today.


1997 ◽  
Vol 129 (S171) ◽  
pp. 101-113 ◽  
Author(s):  
Dan Swanson

AbstractThe net present value (NPV) approach to capital budgeting is used to determine the relative economic feasibility of two production models capable of manufacturing a fungi-based biopesticide in Madagascar. Sales revenues are projected at $10–12 per hectare for 20 000–80 000 ha annually, with recurrent costs estimated in Madagascar and investment costs from IITA (Cotonou, Benin) and Mycotech Corporation (Butte, Montana). These cash flows are discounted by an appropriate interest rate and risk factor, with positive results for both the labour-intensive model and the capital-intensive model under several scenarios. Cost advantages for the two models depend on both technology and scale. The labour-intensive model achieves a higher NPV in a market of 20 000 ha per annum as compared with the capital-intensive model. The capital-intensive model achieves a higher NPV in a market of 80 000 ha (including exports to southern Africa). Both models benefit from scale economies, although this benefit is relatively greater for the capital-intensive model. Consumers of mycopesticides in Madagascar could realize nearly 20% savings under a higher output scenario with a capital-intensive technology, than under a lower output scenario with a labour-intensive technology. Large-scale producers, however, would require nearly four times as much investment capital, and could find it difficult to produce for export from Madagascar. In the absence of a large-scale producer, small-scale production would be appropriate and feasible based on lower investment costs. Malagasy production is also protected from foreign competition because of current phytosanitary regulations.


2017 ◽  
Vol 3 (3) ◽  
pp. 450-472 ◽  
Author(s):  
Qimin Han

Under the so-called ‘de-involution’ of the young leaving and women and elderly left behind in the countryside, how can the Chinese rural sector accomplish a structural transition and achieve large-scale agricultural production? This is the issue to be discussed in this paper. The conventional understanding is that large-scale production is about land concentration and scale management through agricultural businesses, family farms, or agricultural cooperatives. In our view, given the unfavorable Chinese land/people ratio, any attempt to eliminate household-based, small-scale farming is bound to fail. This study suggests that a paradigm shift is needed from ‘Scale Management’ to ‘Scale Service.’ Today’s agricultural production is no longer a ‘Pole-like Straight Way’ model. Different stages and processes of production have their own unique characteristics and functions. With the advancement of agricultural technology and the marketization of production factors, agricultural service has needed to catch up in scale. However, this development does not have to be based on land concentration and the elimination of household farming. On the contrary, it can be done through local social networks. Local social networks can significantly reduce the organizational costs of large-scale services without changing the current household-based small farming community structure. This will bring about a new system of ‘Agricultural Business Management’ that can both improve production efficiency and protect small farmers’ livelihoods. Such a model is a combination of tradition and market. It should play an important role in the rural reconstruction and urbanization of central and western China.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 757
Author(s):  
Ohchan Kwon ◽  
Yunkyu Choi ◽  
Eunji Choi ◽  
Minsu Kim ◽  
Yun Chul Woo ◽  
...  

Graphene oxide (GO) has been a prized material for fabricating separation membranes due to its immense potential and unique chemistry. Despite the academic focus on GO, the adoption of GO membranes in industry remains elusive. One of the challenges at hand for commercializing GO membranes lies with large-scale production techniques. Fortunately, emerging studies have acknowledged this issue, where many have aimed to deliver insights into scalable approaches showing potential to be employed in the commercial domain. The current review highlights eight physical methods for GO membrane fabrication. Based on batch-unit or continuous fabrication, we have further classified the techniques into five small-scale (vacuum filtration, pressure-assisted filtration, spin coating, dip coating, drop-casting) and three large-scale (spray coating, bar/doctor blade coating, slot die coating) approaches. The continuous nature of the large-scale approach implies that the GO membranes prepared by this method are less restricted by the equipment’s dimensions but rather the availability of the material, whereas membranes yielded by small-scale methods are predominately limited by the size of the fabrication device. The current review aims to serve as an initial reference to provide a technical overview of preparing GO membranes. We further aim to shift the focus of the audience towards scalable processes and their prospect, which will facilitate the commercialization of GO membranes.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhijin Gong ◽  
Ge Yang ◽  
Chengchuan Che ◽  
Jinfeng Liu ◽  
Meiru Si ◽  
...  

AbstractRhamnolipids have recently attracted considerable attentions because of their excellent biosurfactant performance and potential applications in agriculture, environment, biomedicine, etc., but severe foaming causes the high cost of production, restraining their commercial production and applications. To reduce or eliminate the foaming, numerous explorations have been focused on foaming factors and fermentation strategies, but a systematic summary and discussion are still lacking. Additionally, although these studies have not broken through the bottleneck of foaming, they are conducive to understanding the foaming mechanism and developing more effective rhamnolipids production strategies. Therefore, this review focuses on the effects of fermentation components and control conditions on foaming behavior and fermentation strategies responded to the severe foaming in rhamnolipids fermentation and systematically summarizes 6 impact factors and 9 fermentation strategies. Furthermore, the potentialities of 9 fermentation strategies for large-scale production are discussed and some further strategies are suggested. We hope this review can further facilitate the understanding of foaming factors and fermentation strategies as well as conducive to developing the more effective large-scale production strategies to accelerate the commercial production process of rhamnolipids.


2021 ◽  
Vol 2115 (1) ◽  
pp. 012026
Author(s):  
Sonam Solanki ◽  
Gunendra Mahore

Abstract In the current process of producing vermicompost on a large-scale, the main challenge is to keep the worms alive. This is achieved by maintaining temperature and moisture in their living medium. It is a difficult task to maintain these parameters throughout the process. Currently, this is achieved by building infrastructure but this method requires a large initial investment and long-run maintenance. Also, these methods are limited to small-scale production. For large-scale production, a unit is developed which utilises natural airflow with water and automation. The main aim of this unit is to provide favourable conditions to worms in large-scale production with very low investment and minimum maintenance in long term. The key innovation of this research is that the technology used in the unit should be practical and easy to adopt by small farmers. For long-term maintenance of the technology lesser number of parts are used.


2019 ◽  
Vol 7 (2) ◽  
pp. 147-161 ◽  
Author(s):  
Maria L.A.D. Lestari ◽  
Rainer H. Müller ◽  
Jan P. Möschwitzer

Background: Miniaturization of nanosuspensions preparation is a necessity in order to enable proper formulation screening before nanosizing can be performed on a large scale. Ideally, the information generated at small scale is predictive for large scale production. Objective: This study was aimed to investigate the scalability when producing nanosuspensions starting from a 10 g scale of nanosuspension using low energy wet ball milling up to production scales of 120 g nanosuspension and 2 kg nanosuspension by using a standard high energy wet ball milling operated in batch mode or recirculation mode, respectively. Methods: Two different active pharmaceutical ingredients, i.e. curcumin and hesperetin, have been used in this study. The investigated factors include the milling time, milling speed, and the type of mill. Results: Comparable particle sizes of about 151 nm to 190 nm were obtained for both active pharmaceutical ingredients at the same milling time and milling speed when the drugs were processed at 10 g using low energy wet ball milling or 120 g using high energy wet ball milling in batch mode, respectively. However, an adjustment of the milling speed was needed for the 2 kg scale produced using high energy wet ball milling in recirculation mode to obtain particle sizes comparable to the small scale process. Conclusion: These results confirm in general, the scalability of wet ball milling as well as the suitability of small scale processing in order to correctly identify the most suitable formulations for large scale production using high energy milling.


2020 ◽  
Vol 8 (1) ◽  
pp. 54-68
Author(s):  
Meena Maiya Suwal ◽  
Janardan Lamichhane ◽  
Dhurva Prasad Gauchan

Micropropagation is an alternative technique to propagate at large scale plants to meet global plant demand. Various researchers have worked on the micropropagation technique to regenerate bamboo species by using nodal segments from years. Contamination, browning, necrosis, and acclimatization with physiological stress are the extreme problems of the micropropagation technique. But, many numbers of papers have been published on micropropagation of the bamboo species through nodal segments as explants. The proliferation of the bamboo shoots is dependent on the season of collection, size of explants, the position of explants, diversity of plants, concentration and combination of plant growth regulators, most adequate culture medium, environmental condition of the equipment, handling, and individual species. Bamboo is a monocarpic fast-growing, tall perennial grass and having the high potential to generate economic and social benefits. It helps to maintain land patterns and control soil erosion.  The long life cycle of the bamboo produces a huge amount of seeds but unfortunately, mostly, they are non-viable. So, bamboos are propagated from vegetative by cutting and air layering. However, these methods are only for a small scale and they also tend to destroy large mother plant stocks and difficult to be transported. So, the in vitro propagation technique is useful to obtain large progenies from desired genotypes. Mostly, BAP and TDZ growth hormones are widely used for shoot multiplication and IBA, NAA and IAA are used for root initiation as per developed protocols in tissue culture for large scale production. This review intends to explore an overview of the recent literature reports to summarize the importance of micropropagation by using nodal segments of bamboo species and factors influencing it.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 480 ◽  
Author(s):  
Hani Z. Asfour ◽  
Zuhier A. Awan ◽  
Alaa A. Bagalagel ◽  
Mahmoud A. Elfaky ◽  
Reda F. A. Abdelhameed ◽  
...  

The diversity of symbiotic fungi derived from two marine sponges and sediment collected off Obhur, Jeddah (Saudi Arabia), was investigated in the current study. A total of 23 isolates were purified using a culture-dependent approach. Using the morphological properties combined with internal transcribed spacer-rDNA (ITS-rDNA) sequences, 23 fungal strains (in the majority Penicillium and Aspergillus) were identified from these samples. The biological screening (cytotoxic and antimicrobial activities) of small-scale cultures of these fungi yielded several target fungal strains which produced bioactive secondary metabolites. Amongst these isolates, the crude extract of Aspergillus terreus strain S020, which was cultured in fermentation static broth, 21 L, for 40 days at room temperature on potato dextrose broth, displayed strong antimicrobial activities against Pseudomonas aeruginosa and Staphylococcus aureus and significant antiproliferative effects on human carcinoma cells. Chromatographic separation of the crude extract by silica gel column chromatography indicated that the S020 isolate could produce a series of chemical compounds. Among these, pure crystalline terrein was separated with a high yield of 537.26 ± 23.42 g/kg extract, which represents the highest fermentation production of terrein to date. Its chemical structure was elucidated on the basis of high-resolution electrospray ionization mass spectrometry (HRESIMS) or high-resolution mass spectrometry (HRMS), 1D, and 2D NMR spectroscopic analyses and by comparison with reported data. The compound showed strong cytotoxic activity against colorectal carcinoma cells (HCT-116) and hepatocellular carcinoma cells (HepG2), with IC50 values of 12.13 and 22.53 µM, respectively. Our study highlights the potential of A. terreus strain S020 for the industrial production of bioactive terrein on a large scale and the importance of future investigations of these strains to identify the bioactive leads in these fungal extracts.


Proceedings ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 31
Author(s):  
Anda Maria Baroi ◽  
Toma Fistos ◽  
Diana Vizitiu ◽  
Valentin Raditoiu ◽  
Roxana Ioana Brazdis ◽  
...  

Worldwide agricultural production is permanently threatened by the numerous fungi and [...]


Sign in / Sign up

Export Citation Format

Share Document