scholarly journals A Finite-Time Speed and Direction Control for Four-Wheel Drive System

2021 ◽  
Vol 5 (2) ◽  
pp. 47-55
Author(s):  
Sarkar Shareef ◽  
Fadhil Aula

With the rapid use of the Four-Wheel Drive System (FWDS) worldwide, the necessity of having an adequate control system to control speed and direction in FWDS is extremely required. For this purpose, several control schemes are available in the literature to control the speed and direction in FWDS which should be fast convergence of the control, continuous control performance, and solving external disturbances. In latest years, finite-time controllers (FTC) have gained more consideration from many researchers in the control area, who have expressed applications in several procedures and systems. This research provides a major review of the FTC approaches via both input and output feedbacks for controlling FWDS.

Author(s):  
Bing Huang ◽  
Ai-jun Li ◽  
Yong Guo ◽  
Chang-qing Wang ◽  
Jin-hua Guo

This paper investigates the finite-time attitude tracking control problem for spacecraft in the presence of external disturbances and actuator faults. Two anti-unwinding attitude tracking control schemes have been proposed based on the rotation matrix and sliding mode control technology. Utilizing a fast terminal sliding mode surface, the first controller can fulfill the finite-time attitude tracking control task with disturbance rejection ability. The second controller can improve the system reliability when the actuator fault occurs. Rigorous mathematical analysis and proof concludes that the proposed controllers can make a spacecraft track the desired attitude command in finite time. Numerical simulation results are presented to demonstrate the effectiveness of the proposed controllers.


Author(s):  
D. B. Blair ◽  
I. J. Spark

Abstract This paper discusses how a computer controlled four-wheel-steering (4WS) system can be used to increase the ability, namely low speed stability and traction as well as increased manoeuvrability of four-wheel-drive (4WD) vehicles. The essential feature of the integrated 4WS/4WD vehicle is that the path of the vehicle is selected via a joy stick or steering wheel, and a computer then controls the drive system of the two right hand wheels independently of the two left hand wheels, along with the positive rotation of the four wheels about vertical axes to the appropriate angles. Previous work by Spark and Besselink (1994a) relating to two wheel steering (2WS) / two wheel drive (2WD) systems will also be discussed briefly and expanded.


1986 ◽  
Author(s):  
A. Zomotor ◽  
H. Leiber ◽  
S. Neundorf ◽  
K.-H. Richter ◽  
K.-H. Buechle

2005 ◽  
Author(s):  
Shinya Imura ◽  
Takehiko Kowatari ◽  
Hisaya Shimizu ◽  
Norikazu Matsuzaki ◽  
Daisuke Yamamoto ◽  
...  

2015 ◽  
Vol 36 (1) ◽  
pp. 65-78
Author(s):  
Mariusz Kowalski

Abstract The paper shows a typical drive systems used in today's vehicles, mainly cars. Approximated scheme of the formation of the driving force of the vehicle and the necessary mathematical relations for the calculation. For example, a typical passenger car BMW 320 was analyzed and calculations obtained a driving force, of adhesion and acceleration. The calculations were performed for the drive system, the classical (i.e. the rear axle of the vehicle) for front-wheel drive and four-wheel drive (4×4). Virtually assumed that to the above mentioned vehicle it is possible buildings of each of said system. These are shown graphically in diagrams bearing a distribution of the forces acting on the substrate and the reactions - the data necessary for the calculations. The resulting calculation is graphically shown in the diagrams, in which is illustrated a change value of the resulting adhesive strength, and the acceleration depending on the drive type vehicle.


Sign in / Sign up

Export Citation Format

Share Document