scholarly journals Metallic Oxides for Innovative Refrigerant Thermo-Physical Properties: Mathematical Models

2021 ◽  
Vol 29 (1) ◽  
pp. 1-15
Author(s):  
R. Saidur ◽  
Mohammed Ahmed ◽  
Ahmed Qays Abdullah ◽  
Omer A. Alawi ◽  
Balaji Bakthavatchalam ◽  
...  

Nano-refrigerant is announced to become an excellent refrigerant, which often improves heat transfer efficiency in the cooling systems. Different materials can be applied to be suspended in traditional coolants in the same way as nanoparticles. In this comprehensive research, mathematical modeling was used to investigate the effect of suspended nanoparticles (Al2O3, CuO, SiO2 and ZnO) on 1,1,1,2-Tetrafluoroethane, R-134a. The thermal conductivity, dynamic viscosity, density and specific heat capacity of the nano-refrigerant in an evaporator pipe were investigated. Compared to conventional refrigerants, the maximum increase in thermal conductivity was achieved by Al2O3/R-134a (96.23%) at a volume concentration of 0.04. At the same time, all nano-refrigerant types presented the same viscosity enhancement of(45.89%) at the same conditions. These types of complex thermophysical properties have enhanced the heat transfer tendencies in the pipe. Finally, the nano-refrigerant could be a likely working fluid generally used in the cooling unit to improve high-temperature transfer characteristics and save energy use.

Author(s):  
Yubai Xiao ◽  
Hu Zhang ◽  
Junmei Wu

Abstract In recent years, hybrid nanofluids, as a new kind of working fluid, have been widely studied because they possessing better heat transfer performance than single component nanofluids when prepared with proper constituents and proportions. The application of hybrid nanofluids in nuclear power system as a working fluid is an effective way of improving the capability of In-Vessel Retention (IVR) when the reactor is in a severe accident. In order to obtain hybrid nanofluids with excellent heat transfer performance, three kinds of hybrid nanofluids with high thermal conductivity are measured by transient plane source method, and their viscosity and stability are also investigated experimentally. These experimental results are used to evaluate the heat transfer efficiency of hybrid nanofluids. The results show that: (1) The thermal conductivity of hybrid nanofluids increases with increasing temperature and volume concentration. When compared to the base fluid, the thermal conductivity of Al2O3-CuO/H2O, Al2O3-C/H2O and AlN-TiO2/H2O nanofluids at 0.25% volume concentration increased by 36%, 24%, and 22%, respectively. (2) Surfactants can improve the stability of hybrid nanofluids. The Zeta potential value is related to the thermal conductivity of the hybrid nanofluids, and it could be used to explain the relationship between the thermal conductivity of the hybrid nanofluids and the dispersion. It also could provide a reference for subsequent screening of high thermal conductivity nanofluids. (3) The addition of C/H2O can effectively reduce the dynamic viscosity coefficient of hybrid nanofluids. (4) The analysis of heat transfer efficiency of the hybrid nanofluids found that both Al2O3-CuO/H2O and Al2O3-C/H2O have better heat transfer ability than water under certain mixing conditions. This study is conducive to further optimizing hybrid nanofluids and its application to the In-Vessel Retention in severe reactor accidents.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402092489
Author(s):  
Saadah Ahmad ◽  
Shahrir Abdullah ◽  
Kamaruzzaman Sopian

Working fluid with higher thermal conductivity and tube with better fluid mixing are two crucial elements for heat transfer enhancement in heat exchanger system. Hence, several methods and techniques have been explored to improve heat transfer efficiency, including dispersing nanoparticles into conventional heat transfer fluid and inserting instruments inside the tube of the heat exchanger. Studies have shown that nanofluid can improve heat transfer efficiency of the system due to its higher thermal conductivity and drastic Brownian motion of nanoparticles while inserts within tube can improve heat transfer efficiency by increasing axial velocity of working fluid for better fluid mixing. This article summarized 109 of journals from recent research on heat transfer enhancement of nanofluid flowing inside the tube with inserts as well as discussing the significant parameters that affected the system’s efficiency such as nanoparticles’ volume fraction, Reynolds number and types and configurations of inserts. Ultimately, analysis will be carried out to determine the most suitable modification of twisted tape inserts with the most optimum value of nanoparticle volume fraction for turbulence flow regime. Finally, some problems that need to be solved for future research such as agglomeration and pressure drop are discussed.


2021 ◽  
Vol 23 (11) ◽  
pp. 641-654
Author(s):  
Huthaifa Ahmed Abed ◽  
◽  
Majid H. Majeed ◽  
Ahmad Q. Mohammad ◽  
◽  
...  

The wickless heat pipe (theroosyphon) is ordinate of three divisions the condenser, evaporator and insulated region (adiabatic region). In this work, the condenser and evaporator regions are made of copper tube with a length of 300 mm, for each an exterior diameter of 28.2 mm and an interior diameter of 26.4 mm. While the insulated region has a length of 400 mm and an exterior diameter of 28.2 mm. The evaporator region of the heat pipe bounded by a coiled heat source that represented the heat source. The condenser is encapsulated in a plastic cylinder to accommodate the flow of the cooling water. Thermosyphon has been filled by R- 134a working fluid. The effect of heat input, filling ratio and sink temperature were all tested and measurement. The results showed that the heat transfer performance increases when the applied energy to the evaporator increases while the total heat transfer efficiency of the heat pipe increases the gradient temperature between the medium of the evaporator and the condenser increases. The optimum fill rate is 119 % (250g), the sink temperature is 20°C, and it has been found to be suitable for optimum heat pipe performance.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 572
Author(s):  
Ching-Jenq Ho ◽  
Shih-Ming Lin ◽  
Chi-Ming Lai

This study explores the effects of pipe wall properties (thermal conductivity k and wall thickness tw) on the heat transfer performance of a rectangular thermosyphon with a phase change material (PCM) suspension and a geometric configuration (aspect ratio = 1; dimensionless heating section length = 0.8; dimensionless relative elevation between the cooling and the heating sections = 2) that ensures the optimum heat transfer efficiency in the cooling section. The following parameter ranges are studied: the dimensionless loop wall thickness (0 to 0.5), wall-to-fluid thermal conductivity ratio (0.1 to 100), modified Rayleigh number (1010 to 1011), and volumetric fraction of PCM particles (0 to 10%). The results show that appropriate selection of k and tw can lead to improved heat transfer effectiveness in the cooling section of the PCM suspension-containing rectangular thermosyphon.


Author(s):  
Huayi Feng ◽  
Yanping Zhang ◽  
Chongzhe Zou

In this paper, a 3-D numerical model is proposed to investigate the capability of generating high operating temperature for a modified solar cavity receiver in large-scale dish Stirling system. The proposed model aims to evaluate the influence of radiation intensity on the cavity receiver performance. The properties of the heat transfer fluid in the pipe and heat transfer losses of the receiver are investigated by varying the direct normal irradiance from 400W/m2 to 1000W/m2. The temperature of heat transfer fluid, as well as the effect of radiation intensity on the heat transfer losses have been critically presented and discussed. The simulation results reveal that the heat transfer fluid temperature and thermal efficiency of the receiver are significantly influenced by different radiation flux. With the increase of radiation intensity, the efficiency of the receiver will firstly increase, then drops after reaching the highest point. The outlet working fluid temperature of the pipe will be increased consistently. The results of the simulations show that the designed cylindrical receiver used in dish Stirling system is capable to achieve the targeted outlet temperature and heat transfer efficiency, with an acceptable pressure drop.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3153
Author(s):  
Nidal H. Abu-Hamdeh ◽  
Abdulmalik A. Aljinaidi ◽  
Mohamed A. Eltaher ◽  
Khalid H. Almitani ◽  
Khaled A. Alnefaie ◽  
...  

The current article presents the entropy formation and heat transfer of the steady Prandtl-Eyring nanofluids (P-ENF). Heat transfer and flow of P-ENF are analyzed when nanofluid is passed to the hot and slippery surface. The study also investigates the effects of radiative heat flux, variable thermal conductivity, the material’s porosity, and the morphologies of nano-solid particles. Flow equations are defined utilizing partial differential equations (PDEs). Necessary transformations are employed to convert the formulae into ordinary differential equations. The implicit finite difference method (I-FDM) is used to find approximate solutions to ordinary differential equations. Two types of nano-solid particles, aluminium oxide (Al2O3) and copper (Cu), are examined using engine oil (EO) as working fluid. Graphical plots are used to depict the crucial outcomes regarding drag force, entropy measurement, temperature, Nusselt number, and flow. According to the study, there is a solid and aggressive increase in the heat transfer rate of P-ENF Cu-EO than Al2O3-EO. An increment in the size of nanoparticles resulted in enhancing the entropy of the model. The Prandtl-Eyring parameter and modified radiative flow show the same impact on the radiative field.


Author(s):  
Yasir M. Shariff ◽  
T. S. Ravigururajan

Experimental results from single-phase refrigerant mixture flow in smooth and micro-coil enhanced meso-channels are presented. R-407C — a mixture of R-32 (23%)/R-125 (25%)/R-134a (52%) — is used as the working fluid and different micro-coils are used in conjunction with two meso-channels (2.78mm and 3.97 mm) to obtain distinct roughness parameters. The flow was varied over a range of Reynolds numbers and experiments were conducted over a heat flux range of 2 to 11 kW/m2. The heat transfer coefficient was found to be dependent on both the heat flux as well as mass flux levels. Results show that heat transfer characteristics are comparable to R-113, and that micro-coil inserts enhanced the heat transfer performance compared to the performance in smooth meso-channels.


2003 ◽  
Author(s):  
B. Yu ◽  
C. X. Lin ◽  
M. A. Ebadian ◽  
R. C. Prattipati

This paper presents an experimental investigation of condensation heat transfer and pressure drop characteristics of refrigerant R-134a flowing through an annular helicoidal passage with the hydraulic diameter of 8.5 mm. The angles of helix axis are oriented at 0, 45, 90 degrees to gravity. The overall and refrigerant-side heat transfer coefficients and pressure drops are experimentally determined at saturation temperature 35°C, refrigerant mass flux 35–180 kg/s·m2, and cooling water temperature 27°C. The results show that orientation has significant influence on the thermal and hydraulic behaviors of the helical pipe. The results can be employed for reference in the effective design of annular helicoidal heat exchangers with R-134a as the working fluid.


2002 ◽  
Vol 124 (4) ◽  
pp. 704-716 ◽  
Author(s):  
Shou-Shing Hsieh ◽  
Chung-Guang Ke

An optical method for measuring the bubble dynamic data subject to an isolated bubble model is presented at low heat flux q⩽1kW/m2; while the operating heat fluxes are up to 30 kW/m2. By simultaneous measurements of departure diameters, velocities, frequencies and nucleation site densities, the heat transfer contribution of an individual active site is evaluated. A single phase heat transfer correlation was used to model the present heat transfer data. The test specimens consisted of tubes with porous copper (Cu) and molybdenum (Mo) plasma coated surfaces. The porosity (ε), the thickness of the porous layer (δ), and the mean pore diameter (η) of the tested tubes are the following: 0.055⩽ε⩽0.057,100⩽δ⩽300μm, and 3⩽η⩽4μm. The tests were carried out using R-134a and R-600a as working fluid at a saturation temperature of 18°C and with low and moderate heat fluxes (⩽1 kW/m2) for boiling visualization and related measurements (⩽30 kW/m2).


2021 ◽  
Vol 945 (1) ◽  
pp. 012058
Author(s):  
Sayshar Ram Nair ◽  
Cheen Sean Oon ◽  
Ming Kwang Tan ◽  
S.N. Kazi

Abstract Heat exchangers are important equipment with various industrial applications such as power plants, HVAC industry and chemical industries. Various fluids that are used as working fluid in the heat exchangers such as water, oil, and ethylene glycol. Researchers have conducted various studies and investigations to improve the heat exchanger be it from material or heat transfer point of view. There have been attempts to create mixtures with solid particles suspended. This invention had some drawbacks since the pressure drop was compromised, on top of the occurrence of sedimentation or even erosion, which incurs higher maintenance costs. A new class of colloidal suspension fluid that met the demands and characteristics of a heat exchanger was then created. This novel colloidal suspension mixture was then and now addressed as “nanofluid”. In this study, the usage of functionalized graphene nanoplatelet (GNP) nanofluids will be studied for its thermal conductivity within an annular conduit with angled fins, which encourage swirling flows. The simulation results for the chosen GNP nanofluid concentrations have shown an enhancement in thermal conductivity and heat transfer coefficient compared to the corresponding base fluid thermal properties. The data from this research is useful in industrial applications which involve heat exchangers with finned tubes.


Sign in / Sign up

Export Citation Format

Share Document