Large-scale viscous simulation of laminar vortex flow over a delta wing

AIAA Journal ◽  
1989 ◽  
Vol 27 (7) ◽  
pp. 833-840 ◽  
Author(s):  
Arthur Rizzi ◽  
Bernhard Muller
Keyword(s):  
2018 ◽  
Vol 610 ◽  
pp. A84 ◽  
Author(s):  
Iker S. Requerey ◽  
Basilio Ruiz Cobo ◽  
Milan Gošić ◽  
Luis R. Bellot Rubio

Context. Photospheric vortex flows are thought to play a key role in the evolution of magnetic fields. Recent studies show that these swirling motions are ubiquitous in the solar surface convection and occur in a wide range of temporal and spatial scales. Their interplay with magnetic fields is poorly characterized, however. Aims. We study the relation between a persistent photospheric vortex flow and the evolution of a network magnetic element at a supergranular vertex. Methods. We used long-duration sequences of continuum intensity images acquired with Hinode and the local correlation-tracking method to derive the horizontal photospheric flows. Supergranular cells are detected as large-scale divergence structures in the flow maps. At their vertices, and cospatial with network magnetic elements, the velocity flows converge on a central point. Results. One of these converging flows is observed as a vortex during the whole 24 h time series. It consists of three consecutive vortices that appear nearly at the same location. At their core, a network magnetic element is also detected. Its evolution is strongly correlated to that of the vortices. The magnetic feature is concentrated and evacuated when it is caught by the vortices and is weakened and fragmented after the whirls disappear. Conclusions. This evolutionary behavior supports the picture presented previously, where a small flux tube becomes stable when it is surrounded by a vortex flow.


AIAA Journal ◽  
2010 ◽  
Vol 48 (12) ◽  
pp. 2831-2839 ◽  
Author(s):  
Lan Chen ◽  
Jinjun Wang ◽  
Lin-xuan Zuo ◽  
Li-Hao Feng

1989 ◽  
Vol 26 (11) ◽  
pp. 971-978 ◽  
Author(s):  
Nick G. Verhaagen ◽  
Steven H. J. Naarding

Author(s):  
T Lee ◽  
LS Ko

The vortex flow and lift force generated by a 50°-sweep non-slender reverse delta wing were investigated via particle image velocimetry, together with flow visualization and force balance measurement, at Re = 11,000. The non-slender reverse delta wing produced a delayed stall but a lower lift compared to its delta wing counterpart. The stalling mechanism was also found to be triggered by the disruption of the multiple spanwise vortex filaments developed over the upper wing surface. The vortex flowfield was, however, characterized by the co-existence of reverse delta wing vortices and multiple shear-layer vortices. The outboard location of the reverse delta wing vortex further implies that the lift force is mainly generated by the wing lower surface while the upper surface acts as a wake generator. The spatial progression of the flow parameters of the vortex generated by the non-slender reverse delta wing as a function of α was also discussed.


Sign in / Sign up

Export Citation Format

Share Document