Accurate numerical methods for boundary layer flows. II - Two-dimensional turbulent flows

Author(s):  
T. CEBECI ◽  
H. KELLER
2002 ◽  
Vol 124 (3) ◽  
pp. 806-808
Author(s):  
J. Dey

A nondimensional number that is constant in two-dimensional, incompressible and constant pressure laminar and fully turbulent boundary layer flows has been proposed. An extension of this to constant pressure transitional flow is discussed.


Author(s):  
D. W. Beard ◽  
K. Walters

AbstractThe Prandtl boundary-layer theory is extended for an idealized elastico-viscous liquid. The boundary-layer equations are solved numerically for the case of two-dimensional flow near a stagnation point. It is shown that the main effect of elasticity is to increase the velocity in the boundary layer and also to increase the stress on the solid boundary.


1982 ◽  
Vol 104 (1) ◽  
pp. 69-76 ◽  
Author(s):  
M. Mengu¨turk ◽  
E. F. Sverdrup

A theory is presented to predict deposition rates of fine particles in two-dimensional compressible boundary layer flows. The mathematical model developed accounts for diffusion due to both molecular and turbulent fluctuations in the boundary layer flow. Particle inertia is taken into account in establishing the condition on particle flux near the surface. Gravitational settling and thermophoresis are not considered. The model assumes that the fraction of particles sticking upon arrival at the surface is known, and thus, treats it as a given parameter. The theory is compared with a number of pipe and cascade experiments, and a reasonable agreement is obtained. A detailed application of the model to a turbine is also presented. Various regimes of particle transport are identified, and the range of validity of the model is discussed. An order of magnitude estimate is obtained for the time the turbine stage can be operated without requiring cleaning.


1975 ◽  
Vol 97 (2) ◽  
pp. 253-256 ◽  
Author(s):  
Ronald M. C. So

If the exact metric influence of curvature is retained and the displacement effect neglected, it can be shown that the momentum integral for two-dimensional, curved boundary-layer flows is identical to the von Karman momentum integral. As a result, attempts by previous researchers to account for longitudinal curvature effects by adding more terms to the momentum integral are shown to be correct.


1985 ◽  
Vol 160 ◽  
pp. 257-279 ◽  
Author(s):  
James C. Williams

The three-dimensional steady laminar-boundary-layer equations have been cast in the appropriate form for semisimilar solutions, and it is shown that in this form they have the same structure as the semisimilar form of the two-dimensional unsteady laminar-boundary-layer equations. This similarity suggests that there may be a new type of singularity in solutions to the three-dimensional equations: a singularity that is the counterpart of the Stewartson singularity in certain solutions to the unsteady boundary-layer equations.A family of simple three-dimensional laminar boundary-layer flows has been devised and numerical solutions for the development of these flows have been obtained in an effort to discover and investigate the new singularity. The numerical results do indeed indicate the existence of such a singularity. A study of the flow approaching the singularity indicates that the singularity is associated with the domain of influence of the flow for given initial (upstream) conditions as is prescribed by the Raetz influence principle.


Sign in / Sign up

Export Citation Format

Share Document