Temperature and velocity field of the two-dimensional transverse hot-air jet in a freestream flow

1972 ◽  
Author(s):  
J. TATOM ◽  
M. COOPER ◽  
T. HAYDEN
Author(s):  
Amir Allaf-Akbari ◽  
A. Gordon L. Holloway ◽  
Joseph Hall

The current experimental study investigates the effect of longitudinal core flow on the formation and structure of a trailing vortex. The vortex is generated using four airfoils connected to a central hub through which a jet flow is added to the vortex core. Time averaged vorticity, circumferential velocity, and turbulent kinetic energy are studied. The statistics of vortex wandering are identified and corrections applied to the vorticity distribution. The vortex generator used in this study was built on the basis of the design described by Beninati et al. [1]. It uses four NACA0012 airfoils connected to a central hub. The wings orientation can be adjusted such that each contributes to a strong trailing vortex on the center of the test section. The vortex generator also had the capability to deliver an air jet directed longitudinally through a hole in the hub at the joint of the airfoils. Tests were done without the jet and with the air jet at jet velocities of 10 and 20 m/s. Planar PIV was used to measure the velocity field in the vicinity of the vortex core. The measurements were taken at 3 chords behind the vortex generator.


2019 ◽  
Vol 880 ◽  
pp. 743-763 ◽  
Author(s):  
Géraldine Davis ◽  
Thierry Dauxois ◽  
Timothée Jamin ◽  
Sylvain Joubaud

The current paper presents an experimental study of the energy budget of a two-dimensional internal wave attractor in a trapezoidal domain filled with uniformly stratified fluid. The injected energy flux and the dissipation rate are simultaneously measured from a two-dimensional, two-component, experimental velocity field. The pressure perturbation field needed to quantify the injected energy is determined from the linear inviscid theory. The dissipation rate in the bulk of the domain is directly computed from the measurements, while the energy sink occurring in the boundary layers is estimated using the theoretical expression for the velocity field in the boundary layers, derived recently by Beckebanze et al. (J. Fluid Mech., vol. 841, 2018, pp. 614–635). In the linear regime, we show that the energy budget is closed, in the steady state and also in the transient regime, by taking into account the bulk dissipation and, more importantly, the dissipation in the boundary layers, without any adjustable parameters. The dependence of the different sources on the thickness of the experimental set-up is also discussed. In the nonlinear regime, the analysis is extended by estimating the dissipation due to the secondary waves generated by triadic resonant instabilities, showing the importance of the energy transfer from large scales to small scales. The method tested here on internal wave attractors can be generalized straightforwardly to any quasi-two-dimensional stratified flow.


1989 ◽  
Vol 8 (2) ◽  
pp. 143-153 ◽  
Author(s):  
G.E. Mailloux ◽  
F. Langlois ◽  
P.Y. Simard ◽  
M. Bertrand

Author(s):  
S. M. Miner ◽  
R. D. Flack ◽  
P. E. Allaire

Two dimensional potential flow was used to determine the velocity field within a laboratory centrifugal pump. In particular, the finite element technique was used to model the impeller and volute simultaneously. The rotation of the impeller within the volute was simulated by using steady state solutions with the impeller in 10 different angular orientations. This allowed the interaction between the impeller and the volute to develop naturally as a result of the solution. The results for the complete pump model showed that there are circumferential asymmetries in the velocity field, even at the design flow rate. Differences in the relative velocity components were as large as 0.12 m/sec for the radial component and 0.38 m/sec for the tangential component, at the impeller exit. The magnitude of these variations was roughly 25% of the magnitude of the average radial and tangential velocities at the impeller exit. These asymmetries were even more pronounced at off design flow rates. The velocity field was also used to determine the location of the tongue stagnation point and to calculate the slip within the impeller. The stagnation point moved from the discharge side of the tongue to the impeller side of the tongue, as the flow rate increased from below design flow to above design flow. At design flow, values of slip ranged from 0.96 to 0.71, from impeller inlet to impeller exit. For all three types of data (velocity profiles, stagnation point location, and slip factor) comparison was made to laser velocimeter data, taken for the same pump. At the design flow, the computational and experimental results agreed to within 17% for the velocity magnitude, and 2° for the flow angle. The stagnation point locations coincided for the computational and experimental results, and the values for slip agreed to within 10%.


The initial value problem for the two-dimensional inviscid vorticity equation, linearized about an azimuthal basic velocity field with monotonic angular velocity, is solved exactly for mode-one disturbances. The solution behaviour is investigated for large time using asymptotic methods. The circulation of the basic state is found to govern the ultimate fate of the disturbance: for basic state vorticity distributions with non-zero circulation, the perturbation tends to the steady solution first mentioned in Michalke & Timme (1967), while for zero circulation, the perturbation grows without bound. The latter case has potentially important implications for the stability of isolated eddies in geophysics.


2002 ◽  
Vol 123 (2-3) ◽  
pp. 242-253 ◽  
Author(s):  
Giovanna Ferrari ◽  
Massimo Poletto

1992 ◽  
Vol 35 (4) ◽  
pp. 484-491
Author(s):  
Stephan Foldes

AbstractWe consider the directed graph representing the obstruction relation between objects moving along the streamlines of a two-dimensional velocity field. A collection of objects is sequentially separable if and only if the corresponding graph has no directed cycles. A sufficient condition for this is the permeability of closed Jordan curves.


Sign in / Sign up

Export Citation Format

Share Document